Survey of the 15-Ft Bubble Chamber Fiducials February-March 1978 Wesley M. Smart # Table of Contents - I. Introduction - II. Fiducial Description and Survey Method. - III. Calculation of Fiducial Positions - IV. Comparison of the 1973 and 1978 Surveys - V. Conclusion - Appendix A Instructions for Surveying the 15-Ft. Bubble Chamber Fiducials, revised May 1978 - Appendix B Computer output distributed to 15-Ft. Bubble Chamber Users giving the results of the 1978 Survey. ## I. Introduction The success of the Fermilab 15-Ft. Bubble Chamber as a instrument for high energy physics research depends critically on the accuracy with which elementary particle tracks can be reconstructed in space using the information recorded on the bubble chamber photographs. There are six cameras located at the top of the bubble chamber. Each camera views the track sensitive volume of the chamber through three concentric hemispherical windows and a wide angle distorting camera lens. Normally a subset of three cameras is used to photograph the tracks each bubble chamber cycle; these three views are then used for stereoscopic reconstruction of the bubble chamber tracks in space from the two dimensional images on the film. Since the camera positions and the distortion coefficients of the lens-window system are only approximately known, we have placed a set of 107 fiducial reference marks on the bubble chamber walls. Most of these fiducials are photographed by each camera along with the tracks. The fiducials are then used to determine the optical constants of each camera so that accurate track reconstruction in space is possible. Some of the machines used to measure 15-Ft. bubble chamber film have an accuracy of 1 μ (10⁻⁶m) in each of the two dimensions on the film. With an average fiducial demagnification of 89 on the film, this corresponds to a distance of 3.5 mils(0.0035 inch) in space. Ideally the positions of the fiducials on the chamber walls should be measured to this accuracy or better. The fiducials were surveyed in February 1973, before the chamber was cooled down or expanded for the first time, and all physics results to date have been based on this survey. Since that time the chamber has been cycled from room temperature to 25°K and back over a dozen times and has been expanded about three million times while cold. Also the four fiducials on the nose cone flange (B7,F7,DD6, and DD8) where removed in March 1976, while searching for a leak, and replaced in only approximately their original positions. These reasons provided ample justification to repeat the fiducial survey in February-March 1978. This second survey has shown that the chamber dimensions have remained remarkably stable over the five year life of the bubble chamber. However, the bottom row(I) fiducials have moved an average of about 20 mils since the 1973 survey. Also there are systematic differences between the surveys which were caused by improper zeroing of the theodolite vertical angle scale during at least one of the surveys. ## II. Fiducial Description and Survey Method Fiducials are located inside the 15-Ft.Bubble Chamber in nine rows and 12 columns. The rows are labeled with a letter; starting at the top with row A, 40 inches above the chamber center and proceeding alphabetically downward to row I at the bottom, 72 inches below the chamber center, as shown in Figure 1. The 12 columns of fiducials are spaced 30° apart and are labeled with a number (1 through 12). These numbers start with one at the downbeam(north) end of the chamber and increase counterclockwise with four on the west side of the chamber and seven at the upbeam (south) end of the chamber. The nose at the upbeam end of the chamber means that there are no fiducials C7,D7, or E7. Fiducials B7 and F7 are on the nose cone flange as well as two additional fiducials DD6 and DD8 which are at the same height as the D row fiducials. Figure 1 also shows the position of the T2 theodolite used to survey the chamber fiducials. The fiducials are draftman's transfer lines' applied directly on the scotchlite using the standard glue which comes on the transfer sheets. The seemingly random orientation, width, and length of the fiducial arms in the chamber were carefully calculated to give (as closely as possible) 1.5mm arm length, 15μ (geometrical) line width, and 90° crossing angle on film in each of the six views. Both the 1973 and 1978 fiducial surveys were done in essentially the same manner. After the bubble chamber piston and cylinder (Z section) have been removed from the bottom of the chamber, a standard survey stand is placed on top of a special survey plat- form I beam which is then bolted to the bottom flange of the chamber (see Figure 1). The I beam platform is very heavy and rigid to provide a stable support for the theodolite. The same platform was used for both surveys. A Wilde T2 Theodolite is placed on the survey stand at a convenient height and the horizontal and vertical angles of all the fiducials are measured several times. The distance between the reference point on the top of the T2 Theodolite and several fiducials in the A and D rows is measured several times using a stick micrometer. The height of the theodolite above the survey platform is also measured. The theodolite is then removed and a one-inch diameter steel ball is placed on the survey stand in the same approximate position. The stick micrometer is then used to measure the distance between the ball and each fiducial. These measurements are repeated several times. In order to make these distance measurements accurately it is essential to place the end of the stick mike exactly on the fiducial. By making a special small end for the stick mike and by using a step ladder inside the chamber for the surveyor at the fiducial end of the stick mike, consistent distance measurements were obtained. The final required measurement is the distance of the reference point above the theodolite optic axis for the T2 used. This was measured by the surveyors with a second theodolite in a separate set up. The distance was 1.188"(1.183") inch in the first (second) survey. The coordinate system, used to report the survey measurements, was approximately centered on the center of the bubble chamber sphere with the Z axis vertically upward and the X axis along the hadron beam direction. The Y axis is positive to the left, looking downstream, which gives a right handed coordinate system. The specific coordinate system used for survey number one (1973) is as follows: 1) Vertical axis (z axis direction). Up as defined by level in T2 Theodolite. - 2) Zero in horizontal angle. The scribe mark on the center of the north (down beam) end of the survey platform I Beam was taken to have horizontal angle equal zero. The positive x axis is taken in this direction | to the z axis defined above. - 3) Y axis is defined \(\text{to the x and z axes, positive} \) to the west to make a right handed coordinate system. - 4) The x=y=0 point was defined to be at the T2 position, directly above (as measured with the T2) a centering target inserted in the ½" diameter hole in the center of the survey platform I beam. - 5) The z=0 point was taken at the nominal center of the sphere, 77.469" above the survey platform I beam which was bolted to the flange at the bottom of the cone. The average of measurements at the north and south ends of the I beam was used. The same prescription was followed for survey #2(1978). Section IV includes a discussion of why this prescription did not result in exactly the same coordinate system and the procedure used to correct this. Since all 15-ft. physics experiments to date have used the survey #1 coordinate system, I have chosen to express the new measurements in the 1973 system. # III. Calculation of Fiducial Positions Four steps are required to reduce the raw survey measurements to the desired positions of each fiducial in the bubble chamber coordinate system. At least two complete sets of measurements of the horizontal and vertical angles and distances for each fiducial are required to achieve reliable results. First the two (or more) sets of measurements are compared and obvious recording errors are corrected. Such errors include angles that are ten minutes off or distances that differ by one inch, etc. The measurements are then averaged, which reduces the random errors below those involved with each observation. The difference between measurements of the same quantity yields an estimate of these errors. The exact posi- tion of the steel ball relative to the theodolite center is then determined using the distance measurements of the subset of chamber fiducials to the T2 reference point together with the averaged angle and distance measurements for those fiducials. Finally, the x,y, and z position of each fiducial are calculated in the coordinate system defined in the previous section. All raw survey measurements are punched on computer cards and then processed with a computer program. This program first converts the raw angles measured in degrees, minutes, and seconds to degrees and decimal fractions. The horizontal angle is redefined to be positive counterclockwise (as the positive x axis is rotated toward the positive y axis) instead of the usual surveyor's convention of being positive clockwise. Some of the angle measurements in the 1978 survey were taken with the theodolite inverted, i.e., with it rotated 180° in horizontal and then vertical angles. Averaging a set of normal angles with an inverted set will correct for certain misalignments in the theodolite. These inverted angle measurements are redefined by subtracting 180° from the horizontal and vertical angles and then adding 360° if the result is negative. The difference of each possible pair of measurements is calculated and printed, as well as histograms, averages, and distribution widths for the horizontal angle (α) , vertical angle (β) , and distance
(d) differences. For convenience in checking the angle differences are converted to mils on a 75" radius sphere. Recording and keypunch errors are obvious from this computer output. The input cards are corrected and the program rerun until all such errors are corrected. In the 1978 survey, four complete sets of angle measurements were made. Two of these were normal and two were inverted. This checking program showed that pairs of β measurements had average differences which exceeded 1.5 degrees in some cases, but the expected small distribution width about this average. The surveyors then discovered that the theodolite vertical angle scale had been improperly zeroed before the measurements. After properly zeroing the vertical angle scale, two more normal sets of β measurements were made. The fiducial checking computer program was then modified to add the required amount to the vertical angle in measurements one through four so that the average β of that set was the same as the average of the two final sets. This problem shows the need to make several measures of the fiducials and to check these measurements quickly with the computer program while the survey equipment is still set up in the bubble chamber. The results of the fiducial checking program usually show which measurements should be used and which should be rejected. Another similiar program is used to average the acceptable data. The same raw survey data cards are used and the same transformations and corrections, as described above, are used. This program also calculates an estimated error on each angle and distance measurement. The next step is to determine the position of the steel ball, used to measure distances, relative to the theodolite center. For six fiducials in the A row and six fiducials in the D row, the distance between the reference point at the top of the T2 Theodolite and the fiducial was measured. The distance between this reference point and the theodolite optic axis is known from a separate measurement. This information, together with the averaged angles and ball distance to the 12 fiducials is input to another computer program. This program varies the ball position relative to the T2 center(3 parameters) to minimize the sum of the squares of the differences between the expected ball to fiducial distance and the distance actually measured. The non-linear fitting program VARMIT² is used for this. The final step is to use the averaged fiducial angle and distance measurements and the position of the steel ball to calculate the x,y, and z positions in the coordinate system defined in the last section. Two simple transformations are also made: The horizontal angle is redefined so that the scribe mark on the north end of the survey platform has zero horizontal angle, and a constant is added to the z coordinate so that z=0 is at the design center of the bubble chamber sphere, 77.469" above the survey platform. These calculations are done by the same program which averages the fiducial measurements and a copy of this output is supplied to each high energy physics group which is interested in 15-ft. bubble chamber physics experiments. A copy of this output for the 1978 survey appears as Appendix B to this memo. # IV. Comparison of the 1973 and 1978 Surveys To compare the results of the two surveys it is necessary to be sure that both are expressed in the same coordinate system. While the prescription given in section II was followed in both cases, small changes in the leveling of the chamber or the way the survey platform was bolted to the chamber make significant changes to the fiducial position differences between the two surveys. To account for possible changes in the coordinate system the following transformation was made on all the fiducials: $$X' = X + \Omega_{3}Y - \Omega_{2}Z - X_{0}$$ $$Y' = Y - \Omega_{3}X + \Omega_{1}Z - Y_{0}$$ $$Z' = Z + \Omega_{2}X - \Omega_{1}Y - Z_{0}$$ (1) Here X,Y, and Z are the coordinates of the fiducial in the survey 2 coordinate system; Ω_1 , Ω_2 and Ω_3 are infinitesimal rotations about the X,Y and Z axes; X_0 , Y_0 and Z_0 are a translation of the origin; and X', Y', and Z' are the fiducial coordinates in the new system. We then define χ^2 as follows: $$\chi^2 = \sum_{\substack{X'-X_1 \\ \text{all}}} (X'-X_1)^2 + (Y'-Y_1)^2 + (Z'-Z_1)^2$$ all fiducials used in fit where X_1 , Y_1 , and Z_1 are the fiducial coordinates from survey #1. The linear least-squares fitting program LINSQ³ was used to find the following values of the six rotation and translation parameters which minimized X^2 : $$\Omega_1 = -0.245 \text{ mr}$$ $X_0 = 0.6 \text{ mil}$ $\Omega_2 = 0.238 \text{ mr}$ $Y_0 = 39.7 \text{ mil}$ $\Omega_3 = -0.845 \text{ mr}$ $Z_0 = 21.9 \text{ mil}$ The first two parameters Ω_1 and Ω_2 represent a possible change in the level of the bubble chamber of 0.342 mr(1 minute 10 seconds) or 23 mils at the 67.5" radius support skirt. If the beam direction is defined as north, this says that the NW part of the chamber is low now, compared to 5 years ago: The other four parameters can be explained by small differences in bolting the survey platfrom to the chamber and in measuring the T2 height above the platform. In order to understand the importance of this transformation it is helpful to define σ , the root-mean-square(RMS) deviation between the two surveys: $$\sigma = (\chi^2/N)^{\frac{1}{2}}$$ where N is the number of fiducials used in the fit. With no change of the coordinate system $\sigma=73.6$ mils; after the above translation $\sigma=22.2$ mils. These numbers represent the difference between two surveys. To get the error on each survey, they should be multiplied by $(2)^{-\frac{1}{2}}$. Then, since this represents the error on all three(X,Y,Z) coordinates, they should be multiplied by $(3)^{-\frac{1}{2}}$ to get the error on a single coordinate. The resulting value for the error on a single coordinate and a single survey is 9.08 mil which is 2.6 times the goal of 3.5 mil and thus represents 2.6 μ on film. Possible causes of this error are random or systematic errors in the survey and dimensional changes in the bubble chamber body. Possible systematic errors between the two surveys include: a difference in the vertical angle zero(β_0), a difference in the scale of the distance measurement (perhaps caused by a temperature difference of the bubble chamber body between the surveys), and differences in the three lengths giving the ball position relative to the T2 position. Unfortunately absolute values of these five parameters cannot be determined by comparing the two surveys, only their difference betweem surveys can be found. Since the bubble chamber is cylindrically symmetric and the survey measurements were made in essentially spherical coordinates, it is useful to re-express the differences between the two surveys in cylindrical and spherical coordinate systems. Figure 2 shows the definitions used; the origin was chosen at the (1978 survey) T2 theodolite position. The differences (survey 2 - survey 1) in these coordinates are given in Table I. Rather than giving the information for each fiducial, the data for each horizontal row has been averaged, see Figure 1 for the locations of the fiducial rows. The "3 coordinate RMS" for each row is defined as: "3 coordinate RMS" = $$\left[\frac{1}{N}\sum_{i=1}^{N}(\Delta\rho_{i})^{2}+(\Delta Z_{i})^{2}+(\rho_{i}\Delta\alpha_{i})^{2}\right]^{\frac{1}{2}}$$ or $$= \left[\frac{1}{N} \sum_{i=1}^{N} (R_{i} \Delta \beta_{i})^{2} + (\Delta R_{i})^{2} + (\rho_{i} \Delta \alpha_{i})^{2}\right]^{\frac{1}{2}}$$ where the sum runs over all fiducials in that row. The "average RMS" for each coordinate is defined, for example " $$\Delta \rho$$ average RMS" = $\left[\frac{1}{N} \Sigma \left(\Delta \rho_{i}\right)^{2}\right]^{\frac{1}{2}}$ where the sum runs over all fiducials in the chamber used in the fit. The low values in the $\rho\Delta\alpha$ column of Table I show that horizontal angles were well measured with no systematic errors; in fact if we multiply the average RMS of 4.4 by $(2)^{-\frac{1}{2}}$ to get the error on a single survey of 3.1 mil, we see that the desired goal of 3.5 mils has been exceeded. The average RMS for the other coordinates are, unfortunately, up to four times larger than this desired value. A quick scan of the averages of these coordinate differences shows systematic effects which depend on fiducial height in the chamber. For example, the variation of average $\Delta\rho$ with fiducial row(i.e., Z) suggests a shift in the vertical angle zero between the two surveys. To understand these systematic effects, we add a seventh parameter (β_0), which corresponds to a shift in the vertical angle zero between surveys 1 and 2, to the least square fit described at the start of this section. The results are given in Table II, which is in the same form as Table I. The extra parameter has reduced σ to 14.5 mil(5.9 mil for a single coordinate and a single survey) which corresponds to 1.7 μm on the film. Systematic effects have been reduced, but the "average RMS" for all other coordinates is still twice as large as for $\rho\Delta\alpha$ indicating that further improvement is possible. The fitted vertical angle zero shift between surveys is 0.44 mr or 1.5 minutes. The next step was to expand the fit to eleven parameters by allowing the overall distance scale and the X,Y, and Z coordinates of the ball, relative to the T2, to vary. The results are shown in Table III. The main cause of the reduction in σ from 14.5 to 12.9 mil was the distance scale change of +0.008% which could have been due to a cooler chamber(5°C) during the second survey. Table IV lists the values of the 11 parameters for the various fits. There are small correlations between ball X and X_O , and between ball Y and Y_O . Larger correlations are present between Z_O ,
β_O , and ball Z. One obvious characteristic of Tables I through III is that the three coordinate RMS for row I fiducials is 1.5 to 1.8 times as large as for any other row. This suggests that dimensional changes have taken place near the bottom flange of the chamber. of the large, 6 foot diameter, hole in the bottom of the chamber, this area is less rigid than the remainder of the chamber body. Table V shows the results of the 11 parameter fit when the row I fiducials are omitted from the fit and the averages. There do not appear to be any further systematic effects above about the ±3 mil level. The distances are measured less well than the angles, indicating that more time should be invested in distance measurements in the next survey. Table VI gives $\rho\Delta\alpha$, $R\Delta\beta$, and ΔR for each fiducial from the final fit which was summarized in Table V. Omitting the row I fiducials has reduced σ to 10.4 mils or 4.2 mils for one coordinate in one survey. This translates to a $1.2\mu m$ error on the film. The random survey errors will be reduced if the data from the two surveys can be averaged. From the above discussion, the problem of dimensional changes in the 15-ft. bubble chamber body can be handled by deleting the row I fiducial measurements in the 1973 survey. The systematic distance scale error of about 0.007% between the two surveys is unimportant; it only causes the same percentage error in the measured momentum of a track. This error is well below other sources of momentum error. The ball X, Y, and Z differences are rather unimportant as can be seen from Table IV; ignoring them increases σ by only 5%. The vertical angle zero shift, β_0 , is important and must be treated properly before the two surveys can be averaged. In the absence of additional data (i.e., a third survey), the safest guess is that the one half the zero shift occurred in each survey. This prescription was also used for the distance scale, ball X, and ball Y shifts as well. Because it is almost degenerate with Z_0 and β_0 the ball Z shift was fixed at 0. There were actually three steps taken to average the data from the two surveys. First the measurements from each survey were modified by $\frac{1}{2}$ the β_0 , D, ball X, and ball Y parameters shown on the last line of Table IV. Each of these modified measurements were then fit to the original survey 1 data and transformed into that coordinate system, using equations(1). Finally the two sets of measurements The measurements of the row I and nose cone flange were averaged. (B7,F7,DD6 and DD8) fiducials in the 1973 survey were deleted before averaging, so the final positions of these fiducials came from only the 1978 survey. The random error on these fiducials is therefore 2 times the error for the remainder of the fiducials. The fiducials that were measured in both surveys now have $\sigma = 5.3$ mils or 3.1 mils per coordinate. This translates to a 0.9 μm random error on the film per coordinate. A reasonable estimate for systematic error is 1.5 times the random error. 5 ## V. Conclusion This detailed comparison of the two surveys has yielded several important conclusions. There have been dimensional changes in the lowest part of the 15' bubble chamber body since it was built, but these were rather small (about 20 mils, see Table V) and probably occurred during the first cooldown. I estimate that the chamber dimensions have been stable since that cooldown. The fiducial survey technique is capable of giving results which are accurate enough not to degrade track reconstruction. However, more care should be used in zeroing the theodolite vertical angle scale and more time should be invested in distance measurements. I wish to thank the survey crews led by Bill Testin (1973) and Tom Nurczyk (1978) for their dedicated efforts and Asa Newman of the bubble chamber crew for his assistance in these measurements. #### FOOTNOTES - 1. Normatype transfer sheet #616450-34, Keuffel & Esser Co. - 2. W. C. Davidon, "Variable Metric Minimization", Argone National Laboratory Report ANL-5990, Rev. 1959 (unpublished). - 3. T. Pomentale, "Linear Least-Squares Fit (LINSQ)", CERN Computer 6000 Series Program Library D-508 Amended 1969 (unpublished), available from the Computing Department, FERMILAB. - 4. There have been some difficulties with securing the bottom of the northwest chamber support legs to the concrete foundation which can explain why this side of the chamber is lower now than in 1973. (G. T. Mulholland private communication.) - 5. This estimate of systematic error is obtained by assuming that all the βo error is in one survey and the other survey has no βo error and then comparing this result with the result obtained when half the βo error is assigned to each survey. # FIGURE CAPTIONS - 1. 15' Bubble Chamber showing fiducial positions and the location of the T2 theodolite used in the survey. - 2. Coordinate system definitions used for expressing differences between the surveys. #### APPENDIX A # INSTRUCTIONS FOR SURVEYING THE 15' BUBBLE CHAMBER FUDICALS Revised May 1978 #### W. M. Smart - 1. Place survey stand on the I beam survey platform and then raise platform into position and bolt to chamber bottom flange. The north end of the platform is marked. The survey stand must be on the platform before it is raised into position or there is no way to get the stand into the chamber. (This has been proved experimentally at least once.) - 2. Secure the stand to the platform and set the T2 Theodolite level over the center hole about 60" above the platform and with approximately 180° of the horizontal angle scale at the scribe mark on the south end of the I beam platform (below nose cone). The vertical angle zero must be set as accurately as possible; errors in setting the vertical angle zero have caused considerable trouble in the first two surveys and is responsible for a large part of the discrepancies between them. - 3. Measure the actual height of the T2 above both the north and south ends of the I beam platform. - 4. Record horizontal and vertical angles and fiducial name of all fiducials and the horizontal angles of the scribe marks on each end of the I beam. Invert the T2 and repeat measurements for all fiducials and scribe marks. - 5. Repeat step 4. - 6. Measure the distance between the T2 reference point and fiducials A2, A4, A6, A8, A10, A12, D2, D4, D6, D8, D10, and D12. Repeat these measurements at least once. The special small end of the stick mike must be used so that it can be placed exactly on the fudicial. The bubble chamber crew will supply a step ladder, with the top end padded with rags to protect the Scotchlite, so that the man at the fiducial end of the stick mike will be close enough to the fiducial to accurately position the small end of the stick mike on the fudicial. The T2 should be level at vertical angle = 90° during these measurements. - 7. The T2 should not be removed from the survey stand until steps 2-6 have been completed and the measurements checked by the responsible person. - 8. Replace the T2 with a 1" ball located near to the T2 optical center (\pm 1/4"). - 9. Measure the actual height of the ball above both ends of the I beam. - 10. Record distance of all fudicials to ball. Observe the same precautions as step 6. - 11. Repeat step 10 three times. - 12. The ball should remain in position until steps 9-11 are completed and the measurements checked by the responsible person. - 13. Measure the distance between the T2 optical axis and the reference point. Fudicials are named according to the following scheme: 1 or 2 letters indicating height in the chamber with the A row nearest the chamber top and the I row at the bottom. The two extra fiducials on the nose cone flange are labeled DD6 and DD8. A number (1 through 12) indicates the approximate horizontal angle of the fiducial. - 1 is opposite nose cone = downbeam = north - 4 is toward elevator = west - 7 is at nose cone = upstream = south | # | <u> Horizontal Angle</u> | <u>#</u> | <u>Horizontal Angle</u> | |---|--------------------------|----------|-------------------------| | 1 | 00 | 7 | 180° | | 2 | 330° | 8 | 150° | | 3 | 300 [©] | 9 | 120 ⁰ | | 4 | 270 ⁰ | 10 | 90 ⁰ | | 5 | 240 ⁰ | 11 | 60 ⁰ | | 6 | 210° | 12 | 30° | | 47.7436 329.7178 299.9861 271.3150 249.4830 271.4150 249.4830 271.4150 249.8830 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4150 241.4155 241.4150 | .4369 180.2175 | ×. | C | • | : | |
--|---|--|--|---|--------------------------------|--------------------------------| | 57.5283 | 7.7997 47.9617
85.005 85.035 | 4969
8133
155 | 422.
482.
483.
68.0189
60131 | 47.4592
47.4592
47.7606
86.023 | | 30.5144
47.3870
85.649 | | 67.5360 337.3678 299.4436 270.4453 290.4053 67.7981 67.8903 67.8703 <td>0.1051 180.1189
7.7383 56.3972
83.176 78.309</td> <td>149.9825 1
57.8257
83.297</td> <td>52 • 13 6 6
57 • 58 6 4
83 • 325</td> <td>92.0903
57.6033
83.302</td> <td>61.3247
57.5736
83.331</td> <td>30 9251
57 3954
82 906</td> | 0.1051 180.1189
7.7383 56.3972
83.176 78.309 | 149.9825 1
57.8257
83.297 | 52 • 13 6 6
57 • 58 6 4
83 • 325 | 92.0903
57.6033
83.302 | 61.3247
57.5736
83.331 | 30 9251
57 3954
82 906 | | 73.5231 75.971 75.912 76.3836 76.197 76.197 76.117 | 9.9311 0.9000
7.8006 0.0009
80.041 0.000 | 149.9400 12
67.7525
80.272 | 22.4172
67.6470
80.269 | 92.2361
57.5595
80.258 | 61.2969
67.6439
80.158 | 30 9647
65 6211
80 0 211 | | 90,2156 90,0553 90,3570 89,8403 90,2436 72,518 72,518 72,5436 72,518 72,703 72,845 72,518 72,518 72,845 72,518 72, | 0.1050 0.0000
9.4422 0.0000
76.2740.0000 | 150.2050 12
79.8886
76.2552 | 20.4528
79.3967
76.510 | 92.6625
79.5106
76.334 | 61.6456
79.1186
76.422 | 71.0836
79.2914
76.187 | | 1. 5950 330.8006 299.6786 271.0833 241.3789 2 59.141 330.9467 299.5928 270.9736 240.6375 2 59.141 330.9467 299.5928 270.9736 240.6375 2 54.8326 114.9189 114.8170 114.7720 114.4908 1 54.8326 133.5670 130.6217 270.8281 240.8453 2 53.5125 531.657 299.5272 270.8281 240.8453 2 53.5125 130.4575 299.5272 270.8280 240.4425 2 65.287 146.58.145.155.1672 144.8420 144.9617 1 65.287 1455.5572 145.145.8150 144.9617 1 65.434 155.5572 145.656 145.656 144.9617 1 65.434 155.5572 145.656 145.656 144.9617 1 65.434 155.5572 145.656 145.656 144.9617 1 65.434 155.5572 145.656
145.656 145.65 | 1.0811 0.0000
9.9875 0.0000
72.959 0.000 | 150.2153 12
90.1111
72.932 | 20.7268
90.1396
73.190 | 92.3550
90.0033
73.097 | 62.3117
90.1836
72.758 | 31.1336
90.0497
72.593 | | 1. 8756 114.9189 114.8170 114.7720 114.4908 1
54.827 64.796 164.894 65.032 164.4908 1
53.5167 333.4675 299.5272 270.8281 240.8453 2
53.5167 130.5670 130.6217 130.4303 130.2820 1
54.4658 144.7525 145.1767 144.8420 240.4427 2
65.287 65.404 65.555 65.477 65.553 1
66.7514 155.5572 | 0.9286 181.1461
1.6250 99.6161
69.355 65.711 | 150.3319 11
101.7236 10
69.478 | 9.56 08
11.3561
69.753 | 92.7936
01.6700
69.423 | 462.2022
101.7070
69.337 | 31.3044
101.7651
69.175 | | 33.5169 333.4675 299.5272 270.8281 240.8453 2
53.6167 130.5670 130.6217 130.4303 130.2820 1
1.1986 329.8061 299.1672 271.3806 240.4425 2
44.4658 144.7525 145.1767 144.8420 144.9617 1
65.287 65.404 65.555 65.477 65.553 1
04.7514 155.5572 | 0.9464 180.4478
4.4497 114.3267
65.271 65.202 | 150.3922 12
114.2453 11
65.449 | 0.4347
4.1389 1
65.513 | 92.9753
14.2675
65.422 | 62.4344
114.5356
.65.238 | 114.7295
65.017 | | 1.1986 329.8061 299.1672 271.3806 240.4425 2
65.287 65.404 65.555 65.477 65.553
6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0.2656 130.1347
63:207 63:077 | 150.0834 12
129.8367 1
63.258 | 20.0414
30.0922
63.275 | 92.6469 | 61.9825
130.0561
63.176 | 31.2333
129.9606
63.106 | | 6
04-7514-155.557
73-4014-79.468 | 4.6947 145.0372
65.457 65.560 | 144, 9595 11
144, 9595 11
65,537 | 20.6731
44.8964
65.570 | 92.6175
44.8417
65.584 | 61.6759
145.2342
65.588 | 31.3375
145.1761
65.591 | | 73.4014 79.468 | | | | | | | | 72.787 72.78 | | entre de la companya | | | | | | 183.0603 148.0000
148.0000 148.0000
0.000 0.000 | | | | | | | MEASUREY ENT NUMBER 2 ANGLES ARE 3 INVENTED WEEK 20-24 FEB 1978. DIST=MEAS 2 MAR 4,1978 .01249 DEG HAS BEEN ADDED TO VERTICAL ANGLE OFGI/ BALL TO FIDUCIAL DISTANCE (INCHES) FOR EACH FIDUCIAL. HEASURE) HOPIZONTAL ANGLE (056)/ VERTICAL ANGLE (066)/ BALL TO FIDUCIAL DISTANCE (INCHES) FOR EACH FIDUCIAL. | | SUPEMENT NU
.01249 DEG
SURE) HOPIZ | HAS BEEN A
ONTAL ANGL | Ë (DEG)/ V | RTICAL ANG
ERTICAL AN | LES
GLE (DEG)/ | BALL TO F | | STANGE (IN | CHES) FOR | EACH_FIDUC | IAL. | | | |----------|--|-------------------------------------|--|--------------------------------|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------------|--| | | 1 | 2 | 3 | 4 | 5 ' | 6 | 7 | 8 | 9 | 10 | 11 | 12 | The second secon | | Α . | .7464
47.6203
35.746 | 329.7178
46.6403
- 85.984 | 293.9928
47.6667
35.716 | 271.3139
47.9019
85.875 | 240.4864
48.0575
85.866 | 210.4386
47.7897
85.940 | 180.2164
47.9439
85.979 | 149.5008
47.7967
86.115 | 122.0189
48.0103
86.024 | 92.4494
47.7533
86.022 | 61.4944
47.4153
85.952 | 30.5117
47.3919
85.651 | | | B | .3963
57.5344
32.907 | 339.2297
57.4953
82.901 | 299.7392
57.4475
82.856 | 279.7481
57.4722
83.066 | 240 • 1964
57 • 5753
83 • 053 | 210.1100
57.7350
83.132 | 189.1239
56.3878
78.256 | 149.9847
57.8180
83.233 | 122.1281
57.5808
83.308 | 92.0903
57.6022
83.284 | 61.3294
57.5708
83.341 | 30.9289
57.4022
82.932 | | | c | .2317
67.5950
79.795 | 330.3692
67.5894
79.713 | 299.4472
67.7994
79.625 | 270.4742
67.7930
79.820 | 249.1136
67.8844
80.044 | 209.9856
67.7919
79.992 | 0.000 | 149.9386
67.7439
80.207 | 122.4156
67.6405
80.229 | 92.2308
67.5625
80.223 | 61.2983
67.6486
90.165 | 30.9639
66.6272
80.218 | a variable was | | D. | 73.5303
75.942 | 330 • 2247
79 • 3992
76 • 013 | 300.0328
79.3822
75.944 | 269.9092
79.3225
76.144 | 240.0789
79.4817
76.173 | 210.1108
79.4308
76.215 | 0.0000 | 159.2053
79.8800
76.187 | 120.4533
79.3886
76.486 | 92.6644
79.5094
76.318 | 61.6486
79.1228
76.415 | 31.0853
79.2997
76.205 | en regione de la compa | | E | .3036
90.2269
72.586 | 330.6169
90.0511
72.635 | 298.9111
91.3567
72.405 | 270.8789
39.3339
72.716 | 240.0986
90.2453
72.803 | 211.0839
89.9842
72.938 | 0.0000 | 150.2186
90.1092
72.951 | 120.7192
90.1169
73.171 | 92.3539
90.0019
73.103 | 62.3125
90.1833
72.780 | 31.1358
90.0628
72.607 | | | F | .6003
101.7108
59.174 | 330.8094
101.9508
68.970 | 299.6794
101.7828
59.104 | 271.9931
101.7292
69.025 | 241.3453
101.6464
69.283 | 210.9306
101.6286
69.324 | 181.1467
99.6078
65.713 | 150.3836
101.7242
69.442 | 119.5639
101.3478
69.720 | 92.7986
101.6655
69.415 | 62.2064
101.7128
69.324 | 31.3092
101.7747
69.174 | | | G | .9461
114.8494
54.875 | 330.9547
114.9139
 | 299.6028
114.8255
64.916 | 270.9775
114.7355
65.040 | 240.6453
114.4967
65.119 | 210.9486
114.4564
65.277 | 180.4456
114.3253
65.197 | 159.3028
114.2428
65.426 | 120.4389
114.1355
65.510 | 92.9767
114.2700
65.422 | 62.4397
114.5380
65.240 |
31.5133
114.7392
65.059 | | | н | .5275
138.5336
33.348 | 330.4742
130.5742
63.116 | 293.5350
130.6283
63.114 | 270.8392
130.4378
63.086 | 240.8581
130.2905
63.208 | 210.8006
130.2719
63.183 | 180.3081
130.1389
63.067 | 150.0975
129.8380
63.237 | 120.0428
130.0967
63.270 | 92.6508
129.8361
63.252 | 61.9911
130.0630
63.183 | 31.2492
129.9794
63.038 | · | | 1 | 1.2536
144.4803
55.317 | 329.8292
144.7569
65.433 | 299.1789
145.1803
65.574 | 271.4093
144.8458
65.471 | 240.4600
144.9778
65.553 | 210.6161
144.7008
55.429 | 180.4808
145.0392
65.540 | 149.2364
144.9678
65.527 | 120.6933
144.8850
65.573 | 92.6289
144.8533
65.586 | 61.7014
145.2369
65.697 | 31.3613
145.1983
65.620 | | | | 5 | 8 | | | | | | | | | | | | | סס | 234.7597
73.3978
72.771 | 155.5608
79.4475
72.727 | | | | 1 01 mm - 10 1 m | ****** | | | | | | | | N | 143.0000
0.000 | .0753
148.0000
0.000 | and the second of o | - | A STANSON ASSESSMENT | | | | | | | e e e e e e e e e e e e e e e e e e e | | 1 2 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 ANGLES ARE 3 NORMAL MEEK FFB 20-24,1978. DIST=MEAS 3 MAR 4,1978 MEASUREMENT NUMBER 3 MAR 4,1978 ******* | | 1.4919 30
7.4225 47
85.961 8 | 1.3250 30
7.5775 57
83.338 8 | 1.2964 30
7.6528 66
90.166 8 | 1.6447 31
9.1211 79
76.415 7 | 2.3067 31
0.1869 90
72.784 | 2.2031 31
1.7058 101
69.325 6 | 2.4347 31
4.5355 114
65.239 6 | 1.9822 31
0.0619 129
63.181 6 | 1.6886 31
5.2319 145
65.693 6 | | | 1
1
3 | |---|---------------------------------------|------------------------------------|------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----|--|---| | | 92.4494
47.7655
486.828 | 92.0861 6
57.6086 5
83.284 | 92.2303
67.5686
80.224 | 92.6614 5
79.5133 7
76.321 | 92.3506
90.0080
73.101 | 92.7951 6
101.6673 10
69.421 | 92.9739 6
114.2694 11
65.421 | 92.6397 5
129.8286 13
63.254 | 92.6131 6
144.3405 14
65.585 | | | 4 | | | 122.0244
48.0244
86.017 | 122 1269
57 5875
83 306 | 122.4167
67.6411
90.231 | 120.4467
79.3941
76.434 | 120.7161
90.1275
73.170 | 119.5622
101.3455
69.722 | 120.4322
114.1347
65.511 | 120.0372
130.0853
63.270 | 120.6786
144.8875
65.577 | | | | | | 149.4947
47.8066
86.137 | 149.9792
57.8258
83.235 | 149.9353
67.7539
80.211 | 150.2019
79.8847
76.185 | 150.2117
90.1080
72.958 | 150.3781
101.7236
69.441 | 150.2997
114.2386
65.423 | 150.0894
129.8383
63.235 | 149.2200
144.9603
165.528 | | : | | | | 18 0 • 21 31
47 • 9514
85 • 983 | 180-1178
56.3941
78.247 | 0000 •0 | 0.000.0 | 0.0000000000000000000000000000000000000 | 181.1422
99.6061
65.713 | 180.4433
114.3241
65.197 | 180.2975
130.1311
63.068 | 180.4692 | | The state of s | Management of the state | | | 210 - 4403
47 - 7958
85 - 938 | 210.1053
57.7411
83.129 | 209,9800
67,8016
79,991 | 210 • 1019
79 • 4344
76 • 239 | 211.0794
89.9847
72.996 | 210 9244
101 6258
69 319 | 210.9425
114.4525
65.278 | 210.7878
130.2664
63.180 | 210.6039
144.6989
55.432 | | The state of s | | | | 240 • 4825
48 • 0686
85 • 865 | 240.1933
57.5841
83.063 | 240.1106
67.3900
80.044 | 240.0750
79.4811
76.179 | 240.0928
90.2436
72.809 | 241.3430
101.6450
69.282 | 240.6347
114.4908
 | 240.8428
130.2894
63.207 | 243.4506
144.9664
65.547 | | | : | | 1 | 271.3139
47.9053
85.877 | 270.7444
57.4830
83.067 | 270.4694
67.7950
79.816 | 269.9031
79.3222
76.146 | 273.8719
89.8436
72.713 | 271.0867
101.7286
69.020 | 270,9731
114,7344
65,037 | 270.8306
130.4333
63.085 | 271,3853
144,8466
65,475 | | | | | | 299.9908
47.6816
85.714 | 299.7386
57.4541
82.859 | 299.4436
67.9066
79.623 | 300.0272
79.3850
75.941 | 293.9100
90.3619
72:410 | 299.6764
101.7861
69.108 | 299.5972
114.8169
54.916 | 299.5247
130.6186
63.114 | 299-1675
145-1622
65-575 | | | | | 1 | 329 • 7222
46 • 6455
85 • 989 | 330.2306
57.4958
82.895 | 370.3700
67.5936
79.706 | 330.2233 | 330.6150
90.0505
72.636 | 330.8025
101.9466
68.969 | 330.9483
114.9130
54.828 | 330.4653
130.5619
63.119 | 329.8133
144.7530
65.432 | œ | 155.5581
79.4583
72.729 | 148,0000 | | | 47.6222 | 57.5328 | 67.5911 | 73.5278 | 93.2186 | 101.73£1
59.173 | 114 8 375 | 131.5194 | 1.1897 | uc | 204.7547
73.4003
72.769 | 183.0278
148.0000 | | • | 4 | œ | L) | 0 | m | L. | o | = | p 1 | | 00 | 7 | | | 1 | ZONTAL ANG | LE (DEGIZ) | ERTICAL AND
VERTICAL AND | IG! F (DEG)/ | BALL TO | FIDUCIAL D | ISTANCE (II | NCHES) FOR | EACH FIDU | CIAL. | ······································ | |---|---|--------------------------------------|---------------------------------------
------------------------------|------------------------------|---|-------------------------------|----------------------|------------------------------|--|---|--| | | 47.6185
0.000 | 329.7200
46.6316
0.000 | | 271.3175
47.9095
0.000 | 240.4861
48.0563 | 210.4428
47.7952
0.000 | 180.2150
47.9438
0.000 | 149.4919
47.8029 | 122.0200
48.0213
0.000 | 92.4517
47.7713 | 61.4975
47.4149
0.000 | 30.5142
47.3896 | | | .3892
57.5327
0.000 | 330.2281
57.4910
0.000 | 299.7361
57.4543 | 279.7489
57.4743 | 240.1997
57.5763 | 210 • 10 56
57 • 7318 | | 149.9844 | 122.1294 | 92.0894
57.6104
0.000 | 61.3319
57.5771 | 30.9311
57.4049 | | | 67.5960
0.000 | 330.3686
67.5766
0.000 | 299.4492
67.7857
0.000 | 270.4761
67.7933 | 240.1100
67.8807
0.000 | 209.9836 | 0.0003 | 149.9394
67.7446 | 122.4189
57.6379 | 92.2367 | 61.2992
67.6513 | 0.000-
30.9664
66.6110 | | | 73.5313
0.000 | 330 • 222 8
79 • 384 9
0 • 000 | 79.3696 | | 240.8767
79.4757 | 210.1086 | 0.0000 | 150.2061 | 120.4531 | 92.6650
79.5110
0.000 | 61.6525
79.1254 | 31.0875
79.2921 | | _ | 93.2238
0.000 | 330.6153
93.0416 | 293.9106
90.3482
0.600 | 279.8736 | 240.0953
90.2327
0.000 | 211.0844 | 0.0000 | 150.2200 | 120 - 7253 | 92.3539 | 62.3164
90.1927 | 0.000-
31.1411
90.0610 | | _ | 101.7116
0.000 | | | 271.0911
101.7307 | 241.3411
101.6410 | 210.9317
101.6221 | 181.1489 | 150.3836
101.7229 | | 92.8017
101.6666 | 62.2078
101.7166 | 31.3108
101.7738 | | | 114.8463 | 330.9494 | 293.6006
114.8116
0.000 | 270 - 9744 | 240.6419 | 210.9483 | 180.4531 | 150.3106 | 120.4450 | 92.9789 | 0.000
62.4419
114.5443 | 0.000
31.5136
114.7443 | | _ | 133.5360
0.000 | 330.4678
130.5616 | | 278.8344 | 240.8494 | 210.8008 | 180.3158
130.1366
0.000 | 150.1050 | 120.0572 | 92.6553 | 61.9922 | | | _ | 1 • 1933
144 • 4838
0 • 000 | 329.8231
144.7543 | 299 • 1 744
145 • 1 724
0 • 000 | 271.3886 | 240.4517 | 210 - 61 83 | 180.4900 | 149.2469 | 120-6828 | 92.6292 | 61.6911 | 31.3508
145.2010 | | | 6 | 8 | | | | 0.000 | 0.00 | 0 + 9 0 3 | 0.000 | 4-804 | יטטע • טיייי | 0.000 | | _ | 204.7578
73.3946
0.000 | 155.5650
79.4568
0.000 | | | | magarini alikik mar - may rasaman maganin sajanga ya s | | | | order real states are seen as the second states of the second states are seen as the second states are seen as | manufacture of the company and the separate | The second second desired to the desi | | | 180.0775
143.0000
0.000 | 148.0000
0.000 | | | | and a selection of the | | | | | - I william de | and the second s | MEASUREMENT NUMBER 5 VERTICAL ANGLES MEAS 1 MAR 1,1978 C. 00000 DEG HAS BEEN ADDED TO VERTICAL ANGLES MEASURED HORIZONTAL ANGLE (DEG)/ VERTICAL ANGLE (DEG)/ BALL TO FIDUCIAL DISTANCE (INCHES) FOR EACH FIDUCIAL. 1 2 3 4 10 11 12 0 _ 0 0 0 0 0.0000 A B B B B B B 0.000 | | • | J | 5 | † | ` | ٥ | ~ | ¢ | 5 | ם ד | 11 | 21 | | |----------|--|----------------------------|---|--|-------------------|-----------------------------
--|--|--|-------------------|--
---|--| | 4 | 47.6308
0.000 | 0.0000
46.6581
0.000 | 0.0000
47.6858
0.000 | 47.9119
0.000 | 48.0578 | 47.7861
0.000 | 47.9447 | 47.8044 | 0.0000
48.0106
0.000 | 47.7597 | 0.0000
47.4269
 | 47.4003 | | | 6 | 9 0000
57 5 3 9 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 57.5089 | 57.4614 | 57.4814 | 57.5775
6.000 | 57:7292 | 55.3861
0.000 | 9.0000
57.8219 | 57.5836
-0000 | 57.6089 | 9.0000 | 57.4078 | | | ۵ | 57.5972
0.000 | 0.0000 8 | 0.000
67.8692
0.000 | 67.7933 | 67.8853 | 67.7933 | 0.00.0000000000000000000000000000000000 | 0.0000
67.7464 | 67.6372 | 67.5706 | 0.9000
67.6533
67.6533 | | | | 6 | 79.5289 | 0.000.0 | 79.3836 | 79.3261 | 79.4744 | 0.0000 7 | 0.0000000000000000000000000000000000000 | 79.8806 | 79.3919 | 79.5167 | 79.1231 | 79.3006 | The state of s | | ш | 90.2211 | 0.000.0 | 90.3517 | 0.0000
89.8372
0.000 | 90.2439 | 0.0000
89.9883
0.000 | 0.000.0 | 90.1119 | 90.1219 | 90.0117 | 93.1850 | 000000000000000000000000000000000000000 | | | ı | 101.7942 | 101.9444 | 101.7803 | 101.7289 | 101.6461
0.000 | 101.6292 | 99.6114
99.6114 | 101.7314
0.000 | 101.3481 | 101.6700 | 101.7139
0.000 | 101.7633 | | | U | 114.8353 | 114.9019 | 114.8114 | 114.7306 | 0.000
114.4900 | 0.0000
114.4558
0.000 | 114.3350 | 114.2458 | 114,1453 | 114.2747 | 114.5344 | 114.7254 | | | T | 130 5111 | 130.5531 | 130.6153
0.000 | 130.4286 | 130,2864 | 130.2775 | 130.1506 | 129,8456 | 130.1011 | 129.8317
0.000 | 130.0550 | 129.9567 | | | H | 144.4567 | 144.7422 | 145.1639 | 144.8372 | 144.9703 | 144.7114 | 145.0494 | 144.96.99 | 144.8931 | 144.84.89 | 145.2303 | 145-1739 | | | | 9 | œ | | | | | | | | | | | | | 00 | 79.3983 | 79.4492 | - | | | | The state of s | on a sumply or through the last of the state | The second of th | | and the state of t | | | | 7 | 148 0300 | 148.0000 | 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | to design the same of | | | | | | | | Total Control of the | | | 9.5283 | |--| | 7.5783 57.6000 57.4603 57.4811 57.5914 57.7350 7.5783 57.4611 57.4611 57.7350 7.5966 67.6920 67.8020 67.8020 67.7938 67.8861 67.7938 7.5966 67.6920 67.8020 67.8020 67.7938 67.8861 67.7938 7.5000 67.6920 67.8020 67.8020 67.7938 67.8861 67.7938 7.5000 67.6920 67.8020 67.8020 67.8020 79.6000 79.6020 7.5000 7.5000 7.5000 79.7847 79.2020 79.6000 79.6020 7.5000 7.5000 79.8020 79.8020 79.8020 79.8020 79.6020 7.5000 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 7.5000 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020 79.8020
79.8020 79. | | 7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300
7.6300 | | 7.63300
7.63300
7.63300
7.53303
7.53303
7.53303
7.53303
7.53303
7.53303
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.530000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7.53000
7. | | 4 4 4 0 0 4 0 2 4 | | • | 47.6163
47.6163
\$5.746 | 329.7189
46.6387
85.984 | 299.98.75
47.6748
85.715 | 271.3163
47.9119
85.875 | 240 4831
48.0600
85.866 | 210-4399 | 180-2163
47-9527
85-979 | 149.4944
47.8081
86.115 | 122.0194
48.0222
86.0224 | 92.4554
47.7659
 | 61.4944
47.4176
85.952 | 30 - 5143
47 - 3883
85 - 661 | |----------|-------------------------------------|--------------------------------|--------------------------------|--|--------------------------------|--|---
--|--------------------------------|--|-------------------------------|------------------------------------| | æ | 57.5305 | 330.2281
57.4970
82.901 | 299.7353
57.4533
82.856 | 270 - 7479
57 - 4776
83 - 056 | 240-1957
57-5791
83-053 | 210.1058
57.7351
83.132 | 180-1208
56-3906
78-256 | 149.9835
57.8227
83.233 | 122-1297
57-5856
83-308 | 92.0899
57.6094
83.284 | 61.3283
57.5754
83.341 | 30.9286
57.4006
82.932 | | U | 67.5912 | 330.3682
67.5851
79.713 | 299.4464 | 2713.4757
67.7959
79.820 | 240-1088
67-8855
80-044 | 209.9824
67.7968
79.992 | 0.000.0 | 149.9397
67.7486
80.297 | 122.4181
67.6425
80.229 | 92.2354
67.5651
80.223 | 61.2931
67.6476
80.165 | 30.9656
66.6161
80.218 | | 0 | 79.5272 | 330 -2213
79-3931
76-013 | 300.0317
79.3766
75.944 | 269.9028
79.3236
76.144 | 249.0760
79.4766
76.173 | 210.1068
79.4375
76.215 | 0.000.0 | 150.2056
79.8852
76.187 | 120.4529
79.3948
76.486 | 92.6637
79.5109
76.318 | 61.5490
79.1220
76.415 | 31.0856
79.2918
76.205 | | w | 93.2197 | 330.6136
90.0484
72.635 | 298.9081
90.7526 | 279.8718
89.8405
72.716 | 240.0942
90.2381
72.803 | 211.0828
89.9843
72.908 | 0.0000000000000000000000000000000000000 | 150.21.76
90.1090
72.951 | 120.7231
90.1255
73:171 | 92.3544 90.0065 | 62.3140
90.1881
72.780 | 31.1374 | | u | 101.7958
59.174 | 330.8033
101.9508
68.970 | 293.6808
101.7783
69.104 | 271.0872
101.7293
69.025 | 241.3400
101.6447
69.283 | 210.9301
101.6236
69.324 | 181 • 1475
99 • 6113
65 • 713 | 150.3828
101.7258
69.442 | 119.5644
101.3531
69.720 | 92.7976
101.6683
69.415 | 62.2050
101.7118
59.324 | 31.3076
101.7700
69.174 | | و | 114.8409 | 330.9481
114.9165
54.832 | 299.5967
114.8143
64.916 | 270.9725
114.7319
55.040 | 240.6397
114.4952
55.119 | 210,9474 | 180.4504
114.3227
65.197 | 150 - 3064
114 - 2422
65 - 426 | 120.4399 | 92.9771
114.2686
65.422 | 114.5400 | 31.5104
114.7369
65.059 | | = | 133.5263 | 330.4676
130.5643
53.116 | 299.5324
130.6220
63.114 | 270.8313
130.4334
63.086 | 240.8474
130.2893
63.208 | 210.7975
130.2666
63.183 | 180 - 3093
130 - 1356
63 - 067 | 159.0972
129.8379
63.237 | 120.0493
130.0988
63.270 | 92.6511
129.8348
63.252 | 61.9874
130.0650
63.183 | 31.2360
1.29.9700
63.088 | | H | 144.4748 | 329.8146
144.7534
55.433 | 299-1708
145-1745
55-574 | 271.3846
144.8455
65.471 | 240.4471 | 210.6146 | 180.4839 | 149.2374
144.9654
65.527 | 120.6779
144.8977
65.573 | 92,6233 | 61.6840
145.2420
55.697 | 31, 3442
145, 1886
65,620 | | | ø | œ | | | | | | | | | | | | 0.0 | 204 - 7546
73 - 3980
72 - 771 | 155 FE11
79.4627
72.727 | | | | | | | | | | | | 7 | 180 0431
0 0000
0 000 | 0.0000 | | TO A A TRANSPORT OF THE PROPERTY PROPER | | Print, reprintations along pagement this is a line of the con- | THE CAMPAGE AND LAND L | To Prince the Control of | | The company of the control co | | | | Å. | | |-----------------------------------|--| | | 978 | | | 14,1 | | | 20-2 | | | FEB. | | | # * | | | A B A S | | | 7 u
1 u | | | TANC | | | SIC | | | 18 | | | 하다
하다 | | | 276 | | | 200 | | | L
L
M
M | | | EE
EE | | | 1AL | | | ANGLES ARE A NORMAL WEEK FEB 20-24,1978 DISTANCE MFAS 11, FEB20-24,1978 ANGLES ARE APER TANGETED WEEK 20-24,1978 | | į | <€ | | ** | ARA | | R. | TIP
NO | | ∃ k C | ANG | | THE FOLLOWING AVERAGES COME FROM: | 410 | | EZAG | 0/0:
Wb | | THE FOL_OWING AVERAGE | O W D | | TNG | MEASUREMENT NU | | 0 | MEA SUPERENT N | | FO | SUP | | THE | E T | | , | | SURVAY 2 MEASUREMENTS AVERAGED AND FIDUCIAL POSITIONS CALGULATED JUNE 7,1973 | Ten man | 30 • 5106
47 • 3940
85 • 662 | 30.9286
57.4037
82.938 | 30 - 9636
66 - 6268
80 -221 | 31.0846
79.2989
76.200 | 31.1353 | 31, 3053
101, 7723
69,176 | 31.5092
114.7357
65.057 | 31.2404
129.9715
63.096 | 31 • 3521
145 • 1912
65 • 624 | | | engrapy didy in your Ca. I no a succession | | | | |--|-------------------------------------|-------------------------------|--------------------------------------|--------------------------------|-------------------------------------|---------------------------------|--------------------------------------|----------------------------------|-------------------------------------|-------|---------
--|----|--|--| | 1 AL 1 | 61.4932
47.4189
85.951 | 51.3272
57.5742
83.338 | 61.2974
67.6537
80.168 | 51.6457
79.1219
76.415 | 62.3096
91.1851
72.784 | 62,2047
101,7093
69,325 | 62.4372
114.5358
65.239 | 61.9867
130.0625
63.181 | 61.6950
145.2344
65.693 | | | mercial applications are as a standard of the second | | Consideration design design of the constant | | | EACH FIDUC | 92.4494
47.7594
86.020 | 92.0882
57.6054
83.284 | 92.2306
67.5655
80.224 | 92.6629
79.5114
76.321 | 92.3522 | 92.7974
101.6667
69.421 | 92.9753
114.2697
65.421 | 92.6453
129.8323
63.254 | 92.6210
144.8469
65.585 | | | | | | | | CHES) FOR | 122.0217
48.0173
86.017 | 122,1275
57,5842
83,306 | 122.4161
67.6408
80.231 | 120.4500
79.3914
76.484 | 120.7176
90.1222
73.170 | 119.5631
101.3467
69.722 | 120.4356
114.1351
65.511 | 120.0400
130.0910
63.270 | 120.6860
144.8862
65.577 | | | | | A CONTRACTOR OF THE CONTRACTOR OF | es dependentes es estados esta | | MEAS 3.
STANCE (INC | 149.4978
47.8017
86.137 | 149.9319
57.8219
83.235 | 149.9369
67.7489
80.211 | 150.2036
79.8823
76.135 | 150 - 2151
90 - 1086
72 - 968 | 150.3888
101.7239
69.441 | 150.3013
114.2497
65.423 | 150.0935
129.8382
. 63.235 | 149.2232
144.9640
65.528 | | | American Company of the t | \$ | | | | STANCES ARE
FIDUCIAL PI | 180.2147
47.9476
85.983 | 180-1208
56-3910
78-247 | 0.0000 | 0000 • 0 | 0000 • 0 | 181.1444
99.6069
65.713 | 180 • 4444
114 • 3247
65 • 197 | 180.7028
130.1350
63.068 | 180.4750
145.0368
65.541 | | | A Commenter of the comm | | | and the second second | | AND 3. DIS | 210.4394
47.7928
85.938 | 210.1076
57.7380
83.129 | 219.9828
67.7968
79.991 | 210.1064
79.4326
76.209 | 211.0817
89.9844
72.936 | 210.9275
101.6272
69.319 | 210.9456
114.4544
65.278 | 210.7942
130.2692
63.180- | 210.6100
144.6998
65.432 | | | to the second se | | | | | OF MEAS 2
GLE (DEG)/ | 240.4844
48.0628
85.866 | 240.1949
57.5797
83.063 | 240-1121
67-8472
80-044 | 240.0769
79.4814
76.179 | 240.0957
90.2444
72.809 | 241.3426
101.6457
69.282 | 240.6400
114.4937
65.114 | 240.8594
130.2900
63.207 | 240.4553
144.9721
65.547 | | | | | Water Control of the | A CONTRACTOR OF THE PROPERTY O | | AVERAGES
PTICAL ANG
FRICAL AN | 271 - 3139
47 - 9036
85 - 877 | 270.7463
57.4776
83.067 | 270.4718
67.7940
79.816 | 269.9061
79.3223
76.146 | 270.8754
89.8387
72.713 | 271,0899
101,7289
69,020 | 270.9753
114.7350
65.037 | 270.8349
130.4355 | 271.3928
144.8462
65.475 | | | 1007 | | | · · · · · · · · · · · · · · · · · · · | | ANGLES ARE
DOBE TO VE
E (DEG)/V | 299.9918
47.6742
85.714 | 293.7389
57.4538
82.859 | 293 • 4454
67 • 80 30
79 • 623 | 300.0300
79.3836
79.3836 | 298.9106
90.3593 | 299,6779
101,7844
69,108 | 299.6000
114.8212
54.916 | 299.5299
130.6235
63.114 | 299.1732
145.1712
65.575 | | | | | the state of s | | | MAE 8
HAS REEN A
ONTAL ANGL | 329.7200 | 330.2301
57.4955
32.895 | 330 3696
67 5915
79,706 | 330.2240
79.3975
76.013 | 330.6160
90.0508
72.636 | 330.8060 | 330.9515
114.9135
54.828 | 330.4697
130.5680
63.119 | 329.8213
144.7550
65.432 | .559 | | 0.0000 | | and a second sec | | | URENENT NU
0000 0 0 6 6
URED HOPIT | 47.6212 | 57.5336 | 67.5930 | 79.5290 | 99.2228 | 101.7085 | 114.8435
54.871 | 133.5265 | 144.4744 | 6 757 | 73.3990 | 183.0278 | | | | | MEAS! | a | 60 | ပ | 0 | u. | L | to | = | H | 00 | | 7 | | | | and the state of t | | 12 |
30.4419
47.3911
85.661 | 30.8581
57.4022
82.935 | 30.8940
66.6214
80.219 | 31.0145
79.2953
76.293 | 31.0658
90.0573
72.637 | 31.2359
101.7711
69.175 | 31.4392
114.7363
65.058 | 31.1676
129.9707
63.092 | 31.27.76
145.1899
65.622 | | | | | |--------------|--------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|--------------------------------|--------------------------------------|---------------------------------|---|-------------------------------------|------------------------------|--| | | [AL. 11 | 61.4233
47.4182
85.957 | 61.2572
57.5748
93.340 | 61.2272
67.6491
80.166 | 61.5773
79.1220
76.415 | 62.2413
90.1866
72.782 | 62.1343
101.7135
69.325 | 52.3672
114.5384
65.240 | 61,9155
130,0637
63,132 | 51.6190
145.2382
65.695 | | | | | | | EACH FINUCI | 92.3819
47.7627
86.021 | 92.0185
57.6074
83.284 | 92.1629
57.5553
80.224 | 92.5928
79.5111
76.320 | 92.2828
90.0057
73.102 | 92.7269
101.6675
69.418 | 92,9056
114,2691
65,422 | 92.5776
129.8336
63.253 | 92.5516
144.8436
65.536 | | | | | | | CHES) FOR | 121,9500
48,0198
86,021 | 122.0581
57.5849
83.337 | 122.3465
67.6416
30.230 | 120.3809
79.3931
76.485 | 121.6498
90.1239
73.171 | 119,4932
101,3499
69,721 | 120.3672
114.1370
65.511 | 119.9741
130.0949
63.270 | 120.5114
144.8920
65.575 | | | , î | | | 7.8 | STANCE (INC. | 149.4256
47.8049
86.111 | 149.9122
57.8223
83.234 | 149.8678
67.7487
80.209 | 150.1340
79.8843
76.136 | 150.1458
90.1088
72.955 | 150.3113
101.7248
69.442 | 150.2333
114.2414
55.425 | 150.0248
129.8330
63.236 | 149.1622
144.9647
165.528 | | | | | | JJNE 7,19 | IDUCIAL DI | 180.1449
47.9502
85.981 | 180.0503
56.3908
78.252 | 0.000.0 | 0000.0 | 0000 | 181.0754
99.6091
65.713 | 180.3769
114.3237
65.107 | 130,2355
130,1353
63,068 | 180.4089
145.0375
65.541 | | | | | | CALCULATED | BALL TO F | 210 • 3691
47 • 7951
85 • 939 | 210.0352
57.7366
83.131 | 209.9120
67.7958
79.992 | 210.0350
79.4350
76.212 | 211.0117
89.9843
72.907 | 210.8533
101.6254
69.322 | 210.8759
114.4531
65.278 | 210.7253
130.2679
63.182 | 210.5417
144.6983
65.431 | | | | | | POSITIONS | GLE (NEG)/ | 240.4432
48.0614
85.866 | 240.1247
57.5794
83.058 | 240.0399
67.8864
80.044 | 240.0059
79.4790
76.175 | 240.0244
90.2413
72.806 | 241.2708
101.6452
69.283 | 249.5693
114.4945
65.117 | 240.7783
130.2896
63.208 | 240.3806
144.9712
65.550 | | | | | | FIDUCIAL | ERTICAL AN | 271.2445
47.9077
85.876 | 270.6765
57.4776
83.067 | 270.4032
67.7950
79.818 | 269.8339
79.3230
76.145 | 270.8031
89.8396
72.715 | 271.0180
101.7291
69.023 | 270.9033
114.7334
65.039 | 270.7625
130.4345
63.086 | 271.3181
144.8459
65.473 | | | | | | AVERAGED AND | E_(0 = 61/ V | 293.9191
47.6745
85.715 | 299.6665
57.4545
82.858 | 299 • 3753
67 • 7997
79 • 624 | 299.9603
79.3801
75.943 | 293.8338
90.3559
72.408 | 299.6088
101.7814
59.105 | 299.5278
114.8177
54.915 | 299.4606
130.6227
63.114 | 299.1015
145.1729
65.575 | | | | | | STNEWE | ONTAL ANGL | 329.6489
46.6408
85.987 | 330-1585
57-4963
82-898 | 330.2983
67.5883
79.710 | 330 - 1521
79 - 3953
76 - 013 | 330 - 5442
90 - 6496
72 - 636 | 330.7341
101.9498
68.970 | 330.8792
114.9150
64.830 | 330.3981
130.5661
63.118 | 329.7474 | α | 155.4897
79.4578
72.728 | 0000.0 | | | AY 2 MEASUR | AGET HOPIZ | 47.6138
95.749 | 57 • 53285
57 • 5321
\$2 • 910 | 67.5921
79.796 | 73.5281 | 93.2320 | 101.7071
39.174 | 114.8422
54.873 | 131 - 4522
131 - 5264
53 - 649 | 144.4746 | Q | 294 - 5853
73 - 3985
72 - 770 | 173.9649.
0.0000
0.000 | | | SURV | AVER | 4 | c o | ن
ر | c | LL | L | ဖ
ဖ | x | - | | . 60 | <u> </u> | | | | ♦\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fr | 21 11 8 40 10 10 10 10 10 10 10 10 10 10 10 10 10 | 21 421 12 12 42 1
42 42 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 | 1141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.41 | 67 | • | o | r | 2 | 4 | | |----------|---|---|--|---|--|---------------------------------------|------------|---|-------|----------|-----------------|----------| | | M + M + M + M + M + M + M + M + M + M + | MH . DV . WN . WH . | **** * * * * * * * * * * * * * * * * * | न्त्र क्षा • क्षा • क्ष •
• • न • • । • • ० • • न
न्त्र । । न । न । । | 9.10 | C. | | | | | | | | | 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ** *** *** *** *** *** *** *** *** *** | ○ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ | 1 1 + | . t | , | ~ L | S. | 1.1 | σ | 9, | 000 | | | 144 1 44 4
• • • • • • • • • • • • • • • • • • • | 0 | - **** * **** * *** * **** * **** * **** * | # # # # # # # # # # # # # # # # # # # | | 7 | | 4.0 | 3.5 | | 14.04 | 7.30
 | | | H | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | · · · · · · · · · · · · · · · · · · · | 6. 4. 41.
6. 66. 66. | 4 | ა | C D | ۲. | | α: | r. | 0 | | | 1 1 1 1 | 600 - WH - | 4m + m4 + m | 41 411
20 • 60 • | -5.0 | 1.67 | | -1.0 | 1.0 | 0.0 | 1.5 | 1.54 | | | 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 | N . MH . | **** * *** * * * * * * * * * * * * * * | o | 9 | -21 | (C) | M. | 9. | 0 | M) | φ, | | | WQ . 44 | M H | | φ¢ • | • ₽ | 20. | 0.0 | -2.0 | 1.00 | 225. | 1.54 | 5.36 | | ם | 1n | | *** ''W' | • +1 | 41 | CU - | Ç) (| 0.0 | -1.46 | -20 | | ا 🖈 ا | | | 111 | | SIN (| | | t e | ာ •
•ပ | 0 · · · · · · · · · · · · · · · · · · · | - | 11.57 | • 0 | 2.5 | | ţu) | | -10 | ٠, | 8 | 7. | EC. | C) (| • (VI) | | -41 | NI. | | | | • 🗅 | 5 • <u>-</u> | ٠ | 1.59 | 3.14 | 50.4 | • 🗅 | -3.5 | +1 | 1.0 | 12 | 5.5 | | u | 01 | 1.3 | 4.0 | PO . | M | M. | S | 16 | ای | ** | ب ا(| **16 | | | 1 • 34
• 5 | 5 E . I . | 3.5/
-2.0 | 2.5 | ٠
٠ | 1.32 | * C | J. • | -1.0 | 3.0 | 5.1-23 | 1.20 | | ی | ∞ 6 | 1.47 | တ | but (| 44) | 0.1 | 9 | TU I | 44 | | -11 | vo. | | | 1.27 | 2.0 | 5.49 | 1.54 | 2.5 | 1.54 | | *+1 | -1.35 | | 1.58 | 1.0 | | x | ας و | 0.0 | \sim 1 | | 1.53 | A C | N | œ. | 9 | ο, | N: | NI. | | | •••••••••••••••••••••••••••••••••••••• | 1 1
14
10
10
10
10 | : D : D | | • | - t
- t
- 5 | | 00
+ + | | 11.63 | 1.23 | 0.4- | | — | M | | 1.1 | 44. | 440 | ζĮ, | -11 | TO ! | 91 | | | O) f | | | 0.19 | , ,
, , | 1.02. | -2.0 | • PO | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | . I. | ا
د
دور | -2.0 | H | 2.0 | 1.34 | | 9 | | 8 | | | | | | | | | | | | 00 | MW | 141
00
01
01
01 | | | | | | | | | | | | 2 | 7.6 | , NO | | | Principal and the second secon | | | | | | | | | | | · C | | | | | | | | | | | Service Service Community of Francisco Community Communi €3 94 | اسا | TION OF EA | CH'FIDUCIA | [[WARM) R | ELATIVE TO | NOMINAL C | HAMBER CE | NTER. X/Y/Z | IN (INCHES) | | • | | C + | |-----|--|---|---|--|--|--|--|--|---|--|--|--| | - 1 | 2.871 | 3.50
3.50
3.50
3.50 | | 3,375 | 1.372
5.254 | 4.664
2.031 | .557 | 7.0666
7.2966 | 3.563
3.977 | 2.631
3.2531 | 0.073 | 3.964
1.713 | | | 47 0319
74 5383 | 41.2660 | 39.9837 | 39.8793
74.8549 | 39.7445 | 40.1154 | 39.9837
75.0883 | 40.2194 | 39.3953 | 40.1397
74.9646 | 40.4320 | 40.2315
74.4078 | | | 59.4913
25.8864
75.8729
74.5073 | 60,2586
34,5683
26,9195
74,5032 | 34.3723
60.34.30
26.9754
74.5010 | 8229
69 6904
27 0951
74 7768 | -34.7813
60.5470
27.0041
74.8559 | -50.6447
35.0643
26.8785
75.0316 | -64.9312
25.8112
69.8733 | -50 .7460
-35.1950
26.8287
75.1572 | -37.1771
-59.3618
27.1323
75.1140 | -59.4650
-59.9406
-27.0565
75.0351 | 33.6357-
-61.3282
27.0886
75.0087 | 59.5994
-35.6103
27.0530
74.5121 | | | 73 - 3541
12 - 2564
74 - 4910 | 63.6798
36.3197
12.8862
74.4254 | 35.9998
63.99520
12.66552 | 73.5297
12.7120
74.7208 | -36.9351
64.0764
12.7083
75.0433 | -64.0670
36.8581
12.8541
75.0171 | 0000 | -64.0753
-37.1913
12.9676
75.2131 | -39.5941
-62.5192
13.0947
75.1520 | -73.8338
13.1621
75.0497 | 35.5263
-54.6946
13.9031
74.9439 | -62.8480
-37.6049
14.3170
74.6256 | | | 74.3825 | 57.0490
37.0490
-7.4069 | 37-1677
64-4796
74-53890
74-5920 | 74-68765
-4-2627
-4-7535 | -37.4108
-54.8128
-3.4458
74.9142 | -54,8551
37,4985
-3,3714
74,9913 | 00000 | -55.0411
-37.3489
-3.9629
75.1065 | -37.9892
-64.8005
-3.2772
75.1866 | -74.83838
-74.83433
-3.4759
74.9916 | -655.80139
7-2-9651 | -38.4387
-38.4387
74.6717 | | | 72 4278
-17 6236
74 5369 | 63.1219
35.6484
-17.4068
74.5532 | 34.8885
-17.7933
-17.44872 | 72.7000
-17.1405
74.7002 | -36.4162
-47.6509
-47.9930 | -62.6012
37.6319
-17.3240
75.0679 | 66666666666666666666666666666666666666 | -53.4000
-175.34901
-17.4828
-75.1623 | -37.3415
-63.0159
-17.5023
75.3108 | -73.0450
-17.3513
75.1340 | 33.8618
-64.3368
-17.5808
74.7992 | 62.0714
-37.3933
-17.4154
74.5282 | | | 57 7231
-41 55238
-41 3781 | 58.8755
32.9933
-31.6276
74.5331 | 33.4597
53.8787
-31.4638
74.6762 | 1,2032
67,7154
-31,4052
74,6533 | -32.7228
-31.3742
-41.3742 | -53.5268
34.9697
-31.3704
75.0491 | -65.0565
-28.3601
70.9798 | -59.3104
-33.8146
-31.5134
75.1949 | -33.7606
-59.6891
-31.1096
75.3007 | -3.2416
-38.0590
-31.4138
75.0282 | 31.7618
-50.0745
-31.4296
74.8734 | -35-1245
-31-4588
-74-6832 | | | 53 0147
3992
-44 6585
74 0190 | THO'NO TH | 29.1471
51.4591
-44.6929 | 9358
59 3473
-44.6861
74.2955 | -29.2878
-44.5003
-74.3839 | | -59.8228
-44.3854
-74.4915 | -52.1276
-29.8136
-44.3842
74.6732 | -30.3972
-51.8790
-44.2873
74.6779 | -3.0377
-59.8479
-44.3623
74.5588 | -52.7718
-44.5380
74.3757 | 50 .5583
-30.9034
-44.6450 | | İ | 48 - 1996
3804
75 - 8501 | 41.9415
23.8279
-59.6391
75.9303 | 23 . 7267
41 . 9937
-58 . 7154
75 . 9845 | .6439
48.3833
-58.5753
75.9765 | -23.7411
42.4420
-58.5708
76.1282 | -41.8306
-24.8622
-58.5652
-76.1432 | 148.6811
2001
-58.3889 | -42.4528
-24.4857
-58.2311
76.1095 | -24.3893
-42.2876
-58.4441
76.1498 | -2.2012
-48.8957
-58.1722
76.0239 | 22.9162
-42.9480
-59.2832
75.9382 | - 413 6133
- 565 1733
75 7338 | | į | 38.2472
-7516
-70.9248
80.5837 | 32.8841
19.1795
-71.2182
80.7542 | 18.3733
33.0084
-71.6438
80.9936 | .8753
-71.3775
80.8868 | -18.7838
33.9395
-71.5639
81.0298 | -32.9115
-79.4137
-71.3111
80.9045 | -37.9634
-71.6384
81.0763 | -32.6430
-14.6883
-71.5680
81.0391 | -119.3983
-71.53659
-81.6313 | -1.6969
-71.4751
-71.4751
81.0035 | 17.9611
-33.2428
-71.7859
81.1226 | 32.2732
19.6088
81.6651 | | | 23 - 99 25
23 - 87 21
73 - 95 71 | 1.65
1.29.0583
1.44.06829
1.44.06829 | | | | | | | | | | | | DO | -54 - 9925 | -65.0583 | |----|-------------|---------------------| | | 23.8731
 | -29.6629
-4.0375 | | | 71.6385 | 71.6155 | В | | 3.3
.2
3.4 | 2.4
1.5
2.8 | 2.1 | 1.3
4.2
4.6 | 1.0 | 2.1 | 3.0
.8
3.1 | 3.9
2.7
4.5 | 2.1
3.1
3.6 | 3.3
3.3
3.7 | 1.7
3.0
3.1 | 2.7
2.3 | |-------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------| | | 4.7
2.8 | 4.0
2.3 | 2.5
2.5 | 6.4 | 2.2
2.2 | 2.7
3.6
1.6 | 4.4
3.7 | 6.6
•9 | 5.2
1.3 | 5.9
1.0 | 4.7
•9 | 3.1
4.7
2.4 | | | 2.5
3.7 | 1.7
1.8
3.4 | 2.9
4.6
6.0 | 1.1 | 3.7
2.7
5.0 | 1.3
2.0
2.8 | 2.5
4.5 | | 1.1 | 1.5
2.4
3.1 | 1.2
1.1
1.9 | 1.4
2.5
3.7 | | | 1.2
1.4 | 3.2
2.0
4.3
5.7 | 1.1
1.8
4.3
4.8 | 2.5
1.9
1.4
3.5 | 1.9
1.1
1.1
2.5 | .3 | 0 • 0
0 • 0
0 • 0
0 • 0 | 1.8
1.8
2.7 | 1.2
1.1
1.1
2.0 | 3.8
.5
.3
3.8 | .6
.9
2.0
2.3 | 2.9
2.8
6.9
7.7 | | | 1.8
1.2
2.2 | 1.0
1.6
2.8
3.4 | 1.3
1.6
4.5
5.8 | 2.2
1.0
.8
2.5 | 1.6
2.6
3.2
4.4 | 2.6
1.5
3.2
4.4 | 0.0
0.0
0.0 | 1.1
1.2
2.5
3.0 | 1.7
1.3
2.3
3.1 | 1.5
1.5
.5 | 1.4
.7
.1
1.5 | 2.3
1.4
4.7
5.4 | | | .0
.6
2.0
2.0 | 1.3
1.5
2.2 | 1.7
1.9
4.2
4.9 | 2.3
1.5
1.1
3.0 | 1.7
2.6
4.0
5.1 | .9
.8
.1
1.2 | 0.0
0.0
0.0 | 3.1
2.2
.2
3.9 | 3.0
1.8
2.1
4.1 | 1.4
1.0
1.0
2.0 | 2.7
2.2
1.9 | 1.2
2.4
2.8 | | | .6
.0
1.6
1.7 | .9
1.4
1.2
2.0 | 1.8
2.0
3.7
4.6 | 1.6
2.4
.6
3.8 | 1.4
.9
1.8 | 2.3
1.9
2.2
3.7 | 1.7
2.5
3.1 | 1.7
1.1
1.7 | 1.0
1.2
3.9
4.2 | 2.9
1.1
3.2 | •3
•5
1•5
1•6 | 1.1
1.3
1.4
2.2 | | | 1.9
1.6
3.1 | 1.9
1.8
1.8
3.2 | 1.7
1.7
3.6
4.3 | 1.4
1.5
1.7
2.7 | 1.1
2.0
1.3
2.6 | .8
.9
1.4
1.9 | 3.1
1.0
3.3 | 1.8
2.4
1.0
3.2 | 2.0
1.4
2.0
3.1 | • 9
• 5
• 6
1 • 3 | .6
.8
1.7
1.9 | .7
.8
1.4 | | -7:11.0 | 1.6
.7
1.9 | 1.6
1.2
1.9 | 1.0
.7
.6
1.3 | 1.5
.9
1.0
2.8 | 1.2
.8
.4
1.4 | 1.5
1.4
1.4
2.5 | 2 · 8
· 4
2 · 8 | 1.0
1.4
.7 | 3.7
3.2
3.4
5.9 | 2.5
1.2
1.2
3.0 | 1.0
1.2
1.7 | 2.8
2.3
2.7
4.5 | | , | .2
.2
.1 | 1.3
2.0
 | 1.8
1.4
1.2
2.1 | 2.7
1.2
1.7
3.4 | 2.5
2.1
2.5
4.2 | 1.7
1.6
1.6
2.8 | 2.9 | 1.7
2.6
3.2 | 3.6
5.0
4.2
7.4 | 1.6
1.2
2.2 | 3.7
3.8
3.0
6.0 | 2.8
2.4
1.9
3.6 | | YALID
XXXXX | U AISH TO
ONLY FOR
(INCHEA) | IGGORE THE
FILM TAKEN | 1973 SURV | VEY. DATA RCH 1976. | FOR NOSE C | ONE FLANG | E FIDUCIALS | (87, 67, 10 | 6, AND DD3 |) IS | | I LCAL CONSTANTS | |----------------|---------------------------------------|--------------------------------------|--------------------------------
---------------------------------|---------------------------------|---------------------------------|---|----------------------------------|----------------------------------|---------------------------------|---------------------------------|------------------------------------| | | | | | . 1 | 2 | 9 | | 6 0 | | 10 | :
 | 12 | | 4 | 62.8625
.7353
41.0268 | 53.5235
31.3580
41.2664 | 31.3427
54.5393
39.9898 | 1.3125
63.2846
39.8759 | -31.4288
55.1792
39.7319 | -54.7015
31.9364
40.0922 | -63.5674 | -54.6494
-32.3924
40.1808 | -33.6278
-54.0554
39.8562 | -53.3094
-63.3094 | 30.1101
-55.2358
40.4066 | 53.9814
-31.7174
40.2170 | | 8 | 63.4846
3736
-25.8693 | 60.2224
34.5733
25.9222 | 34.3143
60.3260
26.9735 | 59.6450
27.0911 | -34.8395
50.4715
26.9921 | -60.6814
34.9670
25.8547 | -64.9380
0437
-25.7781 | -60.7232
-35.2934
26.7830 | -37.1339
-59.4393
27.0911 | -69.9888
-69.9888 | 33.6896
-61.3458
27.0626 | 59,6225
-35,6050
27,0388 | | ပ | 73.3603
-1971
12.9037 | 63.6362
36.3308
12.7900 | 35.9409
63.9398
12.6098 | 73.5875 | -36.9932
64.0025
12.6966 | -64.1021
36.7612
12.8000 | 0.0000.0 | -64.0478
-37.2882
12.9258 | -39.5452
-62.5954
13.0522 | -73.8789
13.1251 | 707.0 | | | a | 74.3824 | 54.5343
37.8648
-3.4023 | 37.1129
64.4722
-3.3843 | 74.6480 | -37.4659 64.7424 -3.4574 | -64 8871
37 4049
-3:3955 | 0.0000.00000000000000000000000000000000 | -85.0097 | -37.9348
-64.8715
-3.3199 | -74.8758
-74.8760
-3.5125 | 35.6691
-65.8129
-2.9917 | - 38 4235
- 38 4235
- 3 2555 | | w | 72.4259 | 63.0946
35.6653
17.4032 | 34.8378
63.3545
-17.7894 | 72.6653
-17.1417 | -35.4668
63.0706
-17.6627 | -52-6302
37-5435
-17-3477 | 000000000000000000000000000000000000000 | -63.3654
-36.4732
-17.5243 | -37.2854
-63.0829
-17.5444 | -2.8473
-73.0829
-17.3862 | 33.9190
-64.3436
-17.6075 | 62.1058
-37.3763
-17.4305 | | LL. | 67.7295
-5987
-31.3822 | 58.8535
33.0110
-31.6256 | 33.4158
53.8749
-31.4663 | 1,1519
67,6843
-31,4076 | -32.7674
59.6372
-31.3860 | -58.5505
34.3881
-31.3938 | -65.8523
1.1334
-28.3930 | -59.2759
-33.8959
-31.5534 | -33.7043
-59.7489
-31.1491 | -3.1782
-53.0929
-31.4496 | 31.8184
-50.0798
-31.4558 | 57.9510
-35.1076
-31.4733 | | ي ا | 53.0242 | 51.4970
28.7105
-44.7345 | 29.11.24
51.4548
44.6931 | 8944
59,3131
-44,6905 | -29.3230
51.8587
-44.5133 | -51.3587
30.6255
-44.5688 | -59.8144
3139
44.4173 | -52.1936
-29.8857
-44.4217 | -30.3447
-51.9337
-44.3252 | -2.9783
-59.8795
-44.3961 | 27.5803
-52.7774
-44.5633 | 50.5932-30.8947 | | ı | 43.2118
-3553
-53.5584 | 41.9332
23.8377
-58.6430 | 23.6971
41.9881
58.7130 | 48,3582 | -23.7651
42.3963
-58.5848 | 24.8398
24.8012
-58.5871 | -48.6694
-1332
-58.4185 | -42.4203
-24.5473
-58.2651 | -24.3417
-42.3339
-58.4784 | -2 1481
-48 9233
-58 2032 | 22.9643
-42.9543
-53.3072 | 41.6519
-25.1637
-58.1308 | | H | 39.2624
-7419
-70.9353 | 32.8825
19.1847
-71.2252 | 18.3602
33.0014
-71.6507 | 38.0198
-71.3870 | -18.7970
33.0010
-71.5789 | -32.9133
19.3633
71.3326 | -37.9489
-2163
-71.6656 | -32.6118
-19.5384
-71.5987 | -19.3559
-32.8249
-71.5622 | -1.6500
-38.1027
-71.5034 | 18.0030
-33.2501
-71.8088 | 32.3105
-19.6040
71.6815 | | | 653 - 0179
23 - 7795
- 3 - 9815 | 8
-65-0334
-29-7565
-4-0778 | | e company Vine dank Company - A | | | | | | | | | | 197
SHOT | S SURVEY FI
ULD BE IGNO
4 FOR NOSE | DUCTAL POS
DRED BECAUS
CONE FLANC | SITIONS (WA
SE OF CHAMB | RM) PEPEAT
FR SOOY OT | TED HERE FO
MENSTONAL | OHANGES DE | NESS. THE | DETERMININ
DATA FOR T
FIRST COOLD
FILM TAKEN | HE ROW I F | IDUCIALS. | MOSTE. | ●
本会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会 | |-------------|--|---|--------------------------------|--|--------------------------------|---------------------------------|-------------------------------|---|---------------------------------|----------------------------------|---------------------------------|--| | */* | Z (INCHES) | * г | 3 | L; | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | A A | 62.8536
7294
40.0286 | 53.5013
31.3493
41.2710 | 31.3275
54.5214
39.9985 | 1.3099
63.2603
39.8884 | -31.4208
55.1586
39.7378 | 31.9329
40.1141 | -63.5501
-0553
39.9603 | -54.6278
-32.3732
40.1939 | -33.6084
-54.0266
39.8624 | -2.5844
-63.2674
40.1198 | 39.1055
-55.224
40.400 | | | 8 | 63.4695
3786
25.8724 | 60.2038
34.5649
26.9269 | 34.3046
60.3179
26.9820 | .7537
69.6300
27.1005 | -34.8338
60.4580
27.0018 | -60.6740-
34.9641
26.8773 | 64.9923-
2130
26.8409 | -60.7162-
-35.2886
26.8071 | -37.1211
-59.4030
27.0958 | -2,4244
-69,9737
27.0246 | -33.6689
-61.335
-27.071 | | | C | 73.3390
1861
12.9035 | 63.6262
36.3257
12.8960 | 35.9304
63.9307
12.6106 | 73.5726
12.7212 | 63.9858
12.7060 | -64.0990
36.7540
12.8112 | 0.0000 | -64.0311
-37.2795
12.9327 | -39.5273
-62.5817
13.0631 | -2.7286
-73.8659
13.1406 | -64.6919
12.979 | | | D | 74.3702
1623
-3.5904 | 64.5261
37.0627
-3.4039 | 37.1135
64.4717
-3.3867 | 74.6384
-3.2602 | -37.4642
64.7387
-3.4521 | 37.4090
-3.3870 | 0.0000 | -37.4457
-3.9972 | -64.8751
-3.3087 | -74.8811
-3.5103 | -65.8929
-2.9841 | 7 -3.2527 | | E | 72.4200
2646
-17.6249 | -17.4826 | -17.7820 | -17.1354 | -17.6615 | -17.3372 | 0.0000 | -17.5246 | -17.5342 | -17.3854 | -17.6922 | | | | -31.3884 | -31.6281 | 58.8724
-31.4693 | 67.6923 | 59.6520
-31.3915 | 34.8953
-31.4013 | 1.0433
-28.1730 | -33.8984
-31.5537 | -59.7614
-31.1497 | -3.1834-
-58.1186
-31.4606 | 31.8323
-60.0926
-31.4677 | 57.9736
6 -35.1152
7 -31.4316 | | G | -44.6876 | 28.7106
-44.7406 | 51.4632
-44.6980 | 59.3310
-44.6943 | 51.8760
-44.5153 | 30.6441
-44.5803 | -44.4390 | -44.4339 | -51.9558
-44.3304 | -2.9755
-59.9033
-44.4130 | | 50.6099
4 -30.9022
5 -44.6760 | | | 48.2264
3644
-58.5714 | 23.8404
-58.6580 | 41.9911
-53.7237 | 48.3688
-58.6003 | 42.4178
-58.5895 | 24.8209
-58.6018 | .1377
-58.4365 | -24.5545
-58.2799 | -42.3428
-58.4916 | -43.9411
-58.2206 | -42.9724
-53.3235 | 5 -58.1515 | | | 33 · 2833
- · 7408
-73 · 9651 | -71.2451 | 0.0000 | -71.4105 | -71.6021 | 0.0000 | -37.9736
.2218
-71.6983 | -19.5371 | 0.0000
0.0000
0.0000 | -38.1262 | -33.2661 | 32.3280
1 -19.6059
3 -71.7196 | | 00 | 29.8289 | -65.0550
-29.8060
-3.9604 | | | | | | | | | | | | 70 1 | FOL OWING
THE 1978 SU
FOR THE N | RVEY (SO T | HAT THEY C | AN BE USED | WITH THE | AROVE MEAS | HREMENTS). | DATA FOR | THE ROW T | FIDUCTALS | APPLY FOR | R ALL FILM; | | I | 73.2906
7414
-71.9499 | 32.0072
19.1987
-71.2396 | 18.3755
33.0257
-71.6660 | .8608
38.0431
-71.4033 | 33.0269 | 19.3843 | •2176 | -32.6354
-19.5528
-71.6191 | -32.8493 | -1.6490
-38.1305
-71.5220 | | 32.3358
-19.6169
-71.6973 | | | 7
-64.9243
 | -65.0656
1.1347
-28.3956 | DD 6
-65.0186
-3.978 | 00 8
-65.0356
-29.757
-4.0737 | | | | | | | | | | VERAGE 0F 197 VE HALT OF TH ATA FOR NOSE (MES SM BT) | TS AND 1978
HE SYSTEMAT
CONT FLANG
RECOMMEND | SUSUFY FI
TO TEFERE
FAT THESE | DUCTAL POS
NCES (BETW
S (BZ F 7 D | SITIONS (WA
EEN THE SU
OBSAND DDA | PW) EXPRES
PVEYS) HAS
DETERMININ | SEC IN THE
SECN ASSI
ONLY FOR | GNED TO EA
FILM TAKEN
TOAL CONST | EY COORDI
CH SURVEY
AFTER MA
ANTS. (CO | NATE SYSTEM
SCH 1976.
DE 12A). | 95) • | And the state of t | |--|---|-------------------------------------|---|---|--|-------------------------------------|--|---
--|----------------------------------|--| | 172 (LNUFE) | | ٣ | 4 | rv | 9 | ~ | 80 | б | 10 | 11 | 12 | | 43 62 8580
43 0277 | 53.5124
31.3537
41.2687 | 31.3351.551.5394.39.9942 | 1.3112
63.2725
39.8821 | -31. 4248
55.1589
39.7349 | -54.7002
31.9347
40.1031 | | -54.6336
-32.3858
40.1859 | -33.6181
-54.0410
39.8593 | -2.5860
-63.2884
40.1125 | 30.1077
-55.2303
40.4036 | 53.9732
-31.7111
40.2170 | | 8 63.4771
-3761
25.8708 | 60.2131
34.5691
26.9246 | 34.3095
60.3219
26.9803 | .7553
27.0968 | -34.8366
60.4648
26.9969 | -60.5777
34.9656
26.3660 | 207 | -60.7197
-35.2910
26.7976 | -37.1275
-59.4237
27.0934 | -59.9812
27.0225 | 33.6745
-61.3408
27.8668 | 59.6129
-35.6325
27.0432 | | 73 • 3497
- 1366
12 • 9036 | 3.631
2.833
3.933 | 35.9357
63.9352
12.6162 | .77.5831
12.7161 | -36,9897
63,9942
12,7013 | -64.1036
36.7576
12.8056 | 000 | -54.3334
-37.2838
12.9292 | -39.5351
-62.5836
13.0577 | -73.3724
13.1329 | 35.5723
-64.6996
12.9731 | 62.8598
-37.5998
14.3036 | | | 64.5302
37.0638
-3.4031 | 37.1133
64.4720
-3.3855 | 74.6432 | -37.4690
64.7405
-3.4548 | -64.8850
37.4070
-3.3913 | 000 | -65.0105
-37.4441
-4.0011 | | -3.3270
-74.8785
-3.5114 | 35.5685
-65.8379
-2.9882 | 63.9621
-38.4196
-3.2541 | | E 72.4230
-17.6257 | 3.098
5.664
7.402 | 7.33 | 72.6620
-17.1386 | 6 ~ 6 | 2.637
7.549
7.342 | 000 | 763 | -37.2862
-63.0874
-17.5393 | -73.8463
-73.8883
-17.3868 | 74.9 | -37.3786
-17.4244 | | 7.738 | 53.8608
33.0132
-31.6268 | 33.41.65
58.8736
-31.4678 | 1.1544
-31.4038 | -32,7676
-59,6446
-31,3888 | -58.5546
-34.8917
-31.3976 | 24.
24.
20. | -59.2767
-33.8976
-31.5550 | -33.7048
-59.7551
-31.1494 | -3.1808
-58.1058
-31.4551 | 31.8254
-60.9862-
-31.4617 | -35.1114
-35.1114
-31.4774 | | 59.0337
8787
-44.6811 | 1.502
8.710
4.737 | 29.1175
-44.6955 | 8960
59.3251
-44.6924 | -29.3240
51.8674
-44.5143 | -51.3586
30.6348
-44.5745 | -59.4234
-44.4282 | -52.1024
-29.8919
-44.4278 | -30.3475
-51.9448
-44.3278 | -2.9769
-59.8914
-44.4045 | 27.6872
-52.7814
-44.5684 | 50.6015
- 30.8984
- 44.6680 | | H 43.2191
-3543
-59.5649 | 41.9412
23.8391
-58.6505 | 23.7029
41.9896
-58.7239 | 6169
48,3635
-58,5914 | -27.7647
42.4071
-58.5871 | -41.8456
-24.8110
-58.5945 | -48.6767
-1355
-58.4275 | -42.4264
-24.5589
-58.2725 | -24.3433
-42.3384
-58.4850 | -2.1432
-48.9322
-58.2119 | 22.9718
-42.9633
-58.3153 | 41.6615 | | 1 39.2765
-7417
-73.9426 | 2.894
9.191
1.232 | | 38.0339
-71.3952 | -18,8029
33,0140
-71,5879 | 2.924
9.376
1.342 | -37.9628
-2170
-71.6757 | 1.60
1.60
1.60 | -19.3623
-32.8371
-71.5721 | | 18.0108
-33.2619
-71.8174 | 6840
6840
6890 | | ø | ∞ | | | | | | | | | | | | 0 -65.0183
23.7806
-3.9798 | -65.0345
-29.7571
-4.0757 | | | | | | | | 10 mar | | | | TOW F | THE NO | CONE FLANG | E FINUCIAL | S IS VALID | ONLY FOR | FILM TAKEN | BEFORE MA | IRCH 1976, | | | | Figure 2. Coordinate System Definitions TABLE I AFTER COORDINATE TRANSFORMATION TO SURVEY #1 SYSTEM | Fiducial Row | Δρ
<u>Average</u> | Δ z
Average | ρΔα
<u>Average</u> | RΔβ
Average | ΔR
<u>Average</u> | 3 coord.
RMS | |----------------|----------------------|---------------------------|-----------------------|----------------|----------------------|-----------------| | A | 21.5 mil | -10.5 mil | -2.5 mil | 22.2 mil | 8.8 mil | 27.2 mil | | В | 16.0 | -11.7 | 2.0 | 18.4 | 7.2 | 22.5 | | С | 15.5 | - 9.2 | -2.1 | 14.4 | 10.9 | 19.9 | | D | 4.6 | - 7.7 | -0. 5 | 8.4 | 3.1 | 12.5 | | ${f E}$ | -5.0 | - 8.2 | 0.6 | 8.2 | -4.9 | 13.9 | | F | -12.8 | 3.0 | 0.5 | -0.4 | -13.2 | 16.0 | | G | -17.6 | 7.2 | 0.6 | 0.7 | -19.0 | 21.0 | | Н | -15.1 | 11.5 | 1.6 | 0.9 | -19.0 | 20.8 | | I | -15.0 | 30.3 | 0.6 | -5. 1 | -33.5 | 38.8 | | average | -0.7 | = 0 | 0.1 | 7.8 | -6.2 | - | | average
RMS | 16.5 | 14.2 | 4.4 | 13.7 | 17.0 | 22.2 | TABLE II AFTER COORDINATE TRANSFORMATION AND VERTICAL ANGLE ZERO | Fiducial
Row | Δρ
<u>Average</u> | Δ z
Average | ρΔα
Average | RΔβ
<u>Average</u> | ΔR
Average | 3 coord. RMS | |-----------------|----------------------|---------------------------|----------------|-----------------------|-----------------------|--------------| | A | -4.0 mil | -10.6 mil | -2.5 mil | 5.2 mil | -10.1 mil | 17.0 mil | | В | -3.6 | - 8.9 | 2.0 | 5.6 | - 7.8 | 14.4 | | С | 2.1 | - 4.7 | -2.0 | 5.1 | 0.2 | 9.7 | | D | -1.5 | - 2.7 | -0. 5 | 2.4 | - 2.0 | 9.2 | | E | -4. 9 | - 4.1 | 0.6 | 4.1 | - 4.9 | 11.9 | | F | -6.6 | 5.0 | 0.5 | - 3.6 | - 7 . 5 | 12.2 | | G | -5. 5 | 5.5 | 0.6 | - 2.7 | - 7.3 | 11.8 | | H | 3.1 | 5.0 | 1.6 | - 5.8 | - 0.8 | 10.3 | | I | 8.9 | 19.0 | 0.6 | -18.3 | -10.5 | 28.4 | | average | -1.6 | ≡ 0 | 0.1 | -0.6 | - 5.6 | - | | average
RMS | 8.8 | 10.6 | 4.5 | 9.8 | 9.8 | 14.5 | TABLE III AFTER COORDINATE TRANSFORMATION PLUS 5 PARAMETERS | Fiducial
Row | Δρ
<u>Average</u> | Δ z
Average | ρΔα
<u>Average</u> | RΔβ
Average | ΔR
Average | 3 coord.
RMS | |-----------------|----------------------|---------------------------|-----------------------|----------------|---------------|-----------------| | A | .9 mil | -6.9 mil | -2.6 mil | 5.7 mil | -3.9 mil | 14.4 mil | | В | 1.4 | -6.1 | 2.0 | 5.9 | -2.1 | 12.6 | | C | 7.3 | -2.6 | -2.0 | 5.2 | 5.8 | 11.4 | | D | 3.8 | -1.5 | -0. 5 | 2.2 | 3.4 | 8.3 | | E | 0.4 | -3.8 | 0.6 | 3.8 | 0.4 | 9.1 | |
\mathbf{F} | -1.4 | 4.4 | 0.5 | - 4.0 | -2.3 | 10.5 | | G | -0.4 | 3.6 | 0.5 | - 3.1 | -1.8 | 8.1 | | H | 7.4 | 1.4 | 1.5 | - 5.9 | 4.7 | 10.9 | | I | 11.9 | 14.2 | 0.8 | -17.9 | -4.8 | 25.6 | | average | 3.3 | € 0 | 0.1 | - 0.6 | 0.0 | - | | average
RMS | 8.8 | 8.4 | 4.3 | 9.6 | 7.5 | 12.9 | TABLE IV RESULTS OF SEVERAL FITS USING DIFFERENT SETS OF PARAMETERS | | | | | | | | | | | | Ball | | |-------------|----------|----------------------------|-----------------------|-----------------------|--------------------------|--------------------------|-----------|----------------------|----------|-----------------|-----------------|----------| | | o
mil | $ rac{\Omega_1}{ ext{mr}}$ | $\frac{\Omega_2}{mr}$ | $\frac{\Omega_3}{mr}$ | $\frac{X_0}{\text{mil}}$ | $\frac{Y_0}{\text{mil}}$ | Z₀
mil | β ₀
mr | D
ppm | X
<u>mil</u> | Y
<u>mıl</u> | 翌
mil | | | 22.4 | -0.245 | 0.238 | -0.845 | 0.6 | 39.7 | 21.9 | *** | - | | | - | | | 14.5 | -0.248 | 0.229 | -0.845 | 0.3 | 39.6 | 50.0 | 0.444 | - | - | - | - | | All | 21.7 | -0.245 | 0.238 | -0.845 | 0.8 | 39.6 | 22.0 | _ | 65 | ,- | - | tions | | Fiducials | 15.5 | -0.246 | 0.228 | -0.845 | 0.3 | 39.6 | 12.8 | · | - | - | | -37.4 | | 1 Lacolul 2 | 14.5 | -0.248 | 0.229 | -0.845 | 0.3 | 39.6 | 47.7 | 0.417 | - | | _ | -2.5 | | | 13.4 | -0.248 | 0.229 | -0.845 | 0.6 | 39.6 | 50.6 | 0.450 | 76 | _ | | | | | 12.9 | -0.248 | 0.230 | -0.844 | -1.8 | 38.3 | 47.7 | 0.417 | 79 | -6.9 | -3.1 | -3.0 | | | 12.9 | -0.249 | 0.231 | -0.844 | -1.8 | 38.3 | 50.5 | 0.450 | 79 | -6. 9 | -3.1 | - | | | | | | | | | | | | | | | | | 19.6 | -0.239 | 0.220 | -0.845 | 1.1 | 39.6 | 18.8 | | - | | - | _ | | Omit | 12.2 | -0.239 | 0.215 | -0.845 | 0.7 | 39.6 | 47.8 | 0.440 | - | - | - | - | | Row I | 19.5 | -0.239 | 0.220 | -0.845 | 1.2 | 39.6 | 19.0 | | 28 | - | - | - | | | 14.2 | -0.239 | 0.214 | -0.845 | 0.7 | 39.6 | 12.1 | - | - | - | - | -34.0 | | | 11.9 | -0.240 | 0.216 | -0.845 | 0.7 | 39.6 | 65.4 | 0.648 | _ | - | | 19.4 | | | 11.0 | -0.240 | 0.215 | -0.845 | 0.9 | 39.6 | 50.2 | 0.468 | 70 | - | == | - | | | 10.4 | -0.242 | 0.221 | -0.845 | -1.3 | 38.8 | 65.6 | 0.650 | 70 | -6.0 | -2.0 | 17.1 | | | 10.6 | -0.241 | 0.220 | -0.845 | -1.3 | 38.8 | 50.2 | 0.468 | 72 | -6.0 | -2.0 | - | TABLE V AFTER COORDINATE TRANSFORMATION PLUS 5 PARAMETERS, OMITTING ROW I FROM AVERAGES AND FIT | Fiducial
Row | Δρ
<u>Average</u> | Δ z
Average | ρΔα
<u>Average</u> | RΔβ
Average | ΔR
Average | 3 coord. | |-------------------------|----------------------|---------------------------|-----------------------|----------------|---------------------|----------| | A | -3.0 mil | -1.4 mil | -2.5 mil | -0.9 mil | -3.1 mil | 12.9 mil | | В | -0.4 | -2.4 | 2.1 | 1.8 | -1.6 | 11.0 | | С | 6.7 | -0.7 | -2.0 | 3.2 | 6.0 | 10.4 | | D | 3.5 | -1.5 | -0.4 | 2.1 | 3.2 | 8.0 | | E | -0.2 | -4.7 | 0.6 | 4.7 | -0.2 | 9.5 | | F | -2.7 | 3.2 | 0.6 | -2.6 | -3.3 | 10.5 | | G | -2.2 | 3.3 | 0.6 | -2.1 | -3.3 | 8.5 | | Н | 6.6 | 3.7 | 1.6 | -7.1 | 2.7 | 11.1 | | I | (14.7) | (19.1) | (0.7) | (-23.0) | (- 7.3) | (30.3) | | average | 1.0 | = 0 | 0.1 | -0.2 | 0.0 | | | average
RMS | 7.6 | 5.6 | 4.2 | 6.1 | 7.2 | 10.4 | | Row I
omitting
I8 | (11.3) | (14.9) | (1.5) | (-17.8) | (-5.7) | (21.2) | | | | | | | | | Table VI | from fit).
RMS | 88.00 | 7 4 6 6 | 200r | w 4 tv
- rv rv | M G G | ₩
₩
₩ | WING | พลห | 10.7.7 | j | |-------------------|---|---------------------------------------|--|--|---------------------------------------|------------------------|----------------------------------|---|--|--------------------| | omitted fro | 2 N N N N N N N N N N N N N N N N N N N | 7,44
4.∞₹ | 020 | 10W | 54.2 | meq. | www. | 27.0 | -23.7 | | | (ROW I | 121 | ת סרי
מיטרי | 40.0
40.0 | 1.4.4
11.0 | 12.0
12.0 | -1.7
-13.4
-13.5 | I La
one | 1 H 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 | 11
100
100
100
100
100 | | | R (MILS). | 444
6 | 라마
하 번째
1 | 840
840 | 0 215 | 857.
WELT | 27.0 | 0 × 0 | 0m9
4m4 | 12.7 | | | TAZDELTA
10 | 17.7 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ###################################### | 300
100
110
110
110
110
110
110
110
110 | - 52.
- 53.2
- 53.2 | מים
מילים
מילים | -151
-152
-102
-102 | 0.00
8.01 | 115.1 | | | A/R*DELTA BET | , rep | 18.00 | 1 4
0 0 0
0 0 0 | 004
004 | 101
ocn | 2027 | 2100
2400 | 13.5 | 000 | | | A ALPHA/R
8 | | 100 | 125.6 | ן אלן
מלנט | Nan
wan | 41.00 | 7.1.7 | 5.5 | 11
1000
1000
11 | | | RHO*NELT! | W W W Y | 0.0 | 000 | 000 | 000 | 000 | -11-
-11-
-5-10-
-5-10- | mww
mwm | 1122 | | | re system | 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 14.8
14.3
14.3
14.3 | 135 | W40 | 1.01. | 1 3 H | ₩+10
•••• | 33.8 | 000 | | | Cgo Rn twar | P. 40 | 14.2 | σων
πωω
1 | 0.010
0.010
1 | r.40 | 4004 | 246. | 7.00.7 | 200 × 000 | | | SUPVEY 1 | 7174 | 1,2,5 | 1 & D | - 01r
- 01r
- 01r | + + + + + + + + + + + + + + + + + + + | 125 | ₩
2004 | 13.2 | 0.04
0.04
0.00 | | | 1, IN THE | 5.00
4.03 | 10.44 | 3000 | 1.00
& R. 4 | 4000 | 7.1 | 94.6 | 9.3 | 000 | | | MINUS SURVEY | 4 1 W | 1.9 | +10+ | 1.
1.
1.00 | 5 2 5 | 3.0 | M40 | 70° | -25
-25
-80
-80
-80
-80
-80
-80
-80
-80
-80
-80 | 8
0000
00.00 | | M
M | -11.9 | 1.2.1 | 10.5 | 5.8
6.9 | 1.3 | 12.00 | 14.4 | -7.7 | 17.6 | 000
600 | | SUPVEY | A | Œ | Q | C | u | u | v | I | H | מ | ALL FIDS -2.3